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APPROXIMATE PROPERTIES OF THE ROOT FUNCTIONS
GENERATED BY THE CORRECTLY SOLVABLE BOUNDARY

VALUE PROBLEMS FOR HIGHER ORDER ORDINARY
DIFFERENTIAL EQUATIONS

B.E. KANGUZHIN, D.B. NURAKHMETOV, N.E. TOKMAGAMBETOV

Abstract. In this work properties of systems of root functions generated by the correctly
solvable boundary value problems for higher order ordinary differential equations are
studied. The biorthogonal systems of functions corresponding to the system of root
functions are constructed. The resulting system of root functions is a minimal system.
The completeness of the system of root functions in 𝐿2(0, 1) is proved. The algorithm for
the inverse problem is given by reconstruction of the boundary functions. Moreover, some
identities are found for the eigenvalues of the considered operator.
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1. Introduction

Let 𝐿 be a differential operator in a functional space 𝐿2(0, 1) such that the inverse operator
𝐿−1 is completely continuous. Then, according to the statement from [1](p. 10), spectrum of
the operator 𝐿 consists of a finite or countable set of isolated eigenvalues of a finite algebraic
multiplicity without finite accumulation points. With every eigenvalue 𝜆𝑠 of the geometric
multiplicity 𝑚𝑠, one associates a chain of eigen and adjoint functions of the operator 𝐿

𝐸𝑠 = {𝑦𝑠,0(𝑥, ), 𝑦𝑠,1(𝑥), ..., 𝑦𝑠,𝑚𝑠−1(𝑥)}.

The union of various such chains

{𝐸𝑠 : 𝜆𝑠 − eigenvalue of the operator L}

is called the system of root functions of the operator 𝐿. Thus, the differential operator 𝐿 is
a source of a system of root functions. Systems of root functions are minimal families. The
corresponding system of biorthogonal functions is constructed.

On the basis of asymptotic properties of entire functions one can deduce certain statements on
behavior of the Fourier coefficients by the system of root functions of elements from 𝐿2(0, 1).
The behaviour of such sequence of the Fourier coefficients can differ significantly from the
behaviour of the sequence of the Fourier coefficients according to the classical trigonometric
system.

Let 𝑛 be a natural number larger than two. Let us consider an operator 𝐿 generated by an
ordinary differential expression

𝑙(𝑦) ≡ 𝑦(𝑛)(𝑥) = 𝑓(𝑥) (1)
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in the functional space 𝐿2(0, 1) and having the inner boundary-value conditions

𝑦(𝜈−1)(0) − 𝛿𝜈𝑘

∫︁ 1

0

(𝑙(𝑦))𝜎(𝑥)𝑑𝑥 = 0, 𝜈 = 1;𝑛, (2)

where 𝑘 is a fixed natural number not larger than 𝑛, 𝛿𝑘𝜈 is the Kronecker symbol, the function
𝜎(𝑥) from the space 𝐿2(0, 1), 𝜎(𝑥) indicates the complex conjugation.

It follows from the works [3], [4], that inner boundary-value conditions (2) with any kind of
𝜎(𝑥) describe correctly solvable problems, corresponding to the expression 𝑙(·). The work [5]
also gives a description of a class of correct problems for the Laplace operator.

The main result of the present work is the following theorem.

Theorem 1. Is there exists a nonzero limit

lim
𝜀→1−0

1

1 − 𝜀

∫︁ 1

𝜀

𝜎(𝑥)𝑑𝑥 = 𝛼,

then the system of root functions of the operator 𝐿 is complete in 𝐿2(0, 1).

Theorem 1 is proved in section 5.

2. Resolvent of the operator 𝐿

Theorem 2. Resolvent of the operator 𝐿 is determined by the formula

𝑦(𝑥, 𝜆) = (𝐿−𝜆𝐼)−1𝑓(𝑥) = 𝑅(𝜆)𝑓(𝑥) = (𝐾−𝜆𝐼)−1𝑓(𝑥)+𝜓(𝑥, 𝜆) < 𝑓 ;𝐾*(𝐾*−𝜆̄𝐼)−1𝜎 >, (3)

where 𝐾 is the operator corresponding to the zero Cauchy conditions at zero, 𝐾* is the operator
conjugate to the operator 𝐾, 𝜓(𝑥, 𝜆) is the solution of a homogeneous equation, satisfying all
(but for one) boundary-value conditions of the operator 𝐿:

𝑙(𝜓(𝑥, 𝜆)) = 𝜆𝜓(𝑥, 𝜆),

𝑈𝜈(𝜓) ≡ 𝜓(𝜈−1)(0, 𝜆) − 𝛿𝑘,𝜈

∫︁ 1

0

𝑙(𝜓(𝑦, 𝜆))𝜎(𝑦)𝑑𝑦 = 𝛿𝑘,𝜈 , 𝜈 = 1;𝑛,

where 𝛿𝑘𝜈 is the Kronecker symbol.

To prove Theorem 2 we will need the following lemma.

Lemma 1. If 𝜙(𝑥) is a solution of a homogeneous equation 𝑙(𝜙) = 0 and satisfies the
relations 𝜙(𝑗−1)(0) = 𝛼𝑗, 𝑗 = 1, ..., 𝑛, then the function

𝜓(𝑥, 𝜆) = 𝐿(𝐿− 𝜆𝐼)−1𝜙(𝑥)

represents a solution of the equation
𝑙(𝜓(𝑥, 𝜆)) = 𝜆𝜓(𝑥, 𝜆)

and satisfies the conditions
𝑈(𝜓(𝑗−1)(𝑥, 𝜆)) = 𝛼𝑗, 𝑗 = 1, ..., 𝑛.

Here 𝛼𝑗 is chosen as follows: 𝛼𝑗 = 𝛿𝑗𝑘, where 𝑘 is a fixed natural number.

The lemma is verified directly. Indeed, one can readily see that
𝜓(𝑥, 𝜆) = 𝜙(𝑥) + 𝜆(𝐿− 𝜆𝐼)−1𝜙(𝑥).

It remains only to apply the expressions 𝑙(·) and 𝑈𝑗(·) to both sides of the latter equality.

Proof of Theorem 2. Let s introduce the following notation
𝑦0(𝑥, 𝜆) = (𝐾 − 𝜆𝐼)−1𝑓(𝑥),

𝐶 =< 𝑓,𝐾*(𝐾* − 𝜆̄𝐼)−1𝜎 >,

𝜓(𝑥, 𝜆) = 𝐿(𝐿− 𝜆𝐼)−1𝜙.
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Manifestly, the function 𝑦0(𝑥, 𝜆) belongs to the domain of definition of the operator 𝐾 and is
a solution of the equation 𝑙(𝑦0) − 𝜆𝑦0 = 𝑓(𝑥). In other words, the boundary-value conditions
𝑦
(𝜈−1)
0 (0, 𝜆) = 0, 𝜈 = 1;𝑛 are satisfied for the function 𝑦0(𝑥, 𝜆). In accordance with the right-

hand side of the relation (3), consider the function

𝑦(𝑥, 𝜆) = 𝑦0(𝑥, 𝜆) + 𝐶𝜓(𝑥, 𝜆). (4)

Let us apply the differential expression 𝑙(·) − 𝜆 to both parts of the latter equality. By virtue
of Lemma 1, we have

𝑙(𝑦) − 𝜆𝑦 = 𝑙(𝑦0) − 𝜆𝑦0 = 𝑓(𝑥).

Thus, the right-hand side (4) satisfies the required nonhomogeneous equation. In order to verify
the boundary-value conditions we apply the form 𝑈𝑘(·) to both parts of the equality (4). By
virtue of Lemma 1, we have

𝑈𝜈(𝑦) = 𝑈𝜈(𝑦0) + 𝐶 · 𝑈𝜈(𝜓) = 𝑦
(𝜈−1)
0 (0) − 𝛿𝑘𝜈

∫︀ 1

0
𝑙(𝑦0)𝜎(𝑥)𝑑𝑥+ 𝛿𝑘𝜈𝐶 = 𝛿𝑘𝜈(𝐶

−
∫︀ 1

0
(𝑓(𝑥) + 𝜆𝑦0(𝑥))𝜎(𝑥)𝑑𝑥) = 𝛿𝑘𝜈(< 𝑓,𝐾*(𝐾* − 𝜆𝐼)−1𝜎 >

−
∫︀ 1

0
(𝑓(𝑥) + 𝜆(𝐾 − 𝜆𝐼)−1𝑓(𝑥))𝜎(𝑥)𝑑𝑥) = 0

when 𝜈 = 1, ..., 𝑛. Theorem 2 is proved completely. Note that the works [5] and [6] represent
resolvents of well-posed problems for the Laplace operator and the biharmonic operator.

Note that 𝜓(𝑥, 𝜆) is expressed via 𝜅(𝑥, 𝜆) by the formula

𝜓(𝑥, 𝜆) =
𝜅(𝑥, 𝜆)

∆(𝜆)
,

where 𝜅(𝑥, 𝜆) is a solution of the equation

𝑙(𝜅(𝑥, 𝜆)) = 𝜆𝜅(𝑥, 𝜆) (5)

and satisfies the conditions
𝜅(𝜈−1)(0, 𝜆) = 𝛿𝑘,𝜈 , 𝜈 = 1, ..., 𝑛, (6)

and

∆(𝜆) = 1 − 𝜆

∫︁ 1

0

𝜅(𝑥, 𝜆)𝜎(𝑥)𝑑𝑥. (7)

Then, Theorem 2 entails the validity of the following Corollary:

Corollary 1. Eigenvalues of the boundary-value problem (1)–(2) coincide with zeroes of the
entire function (7).

In particular, it follows that eigenvalues of the operator 𝐿 are isolated and are of a finite
multiplicity without finite accumulation points.

3. The system of root functions of the operator 𝐿 and the corresponding
biorthogonal system

Let 𝜆𝑠 be an eigenvalue of the multiplicity 𝑚𝑠. It means that

∆(𝜆𝑠) = 0,∆
′
(𝜆𝑠) = 0, ...,∆(𝑚𝑠−1)(𝜆𝑠) = 0,∆(𝑚𝑠)(𝜆𝑠) ̸= 0. (8)

On page 445 of the monograph [7] there is an expansion theorem that entails that the projector
𝑃𝑠 : 𝐿2[0, 1] → 𝐾𝑒𝑟(𝐿− 𝜆𝑠𝐼)𝑚𝑠 represents the residue of the resolvent at a singular point 𝜆𝑠

(𝑃𝑠𝑓)(𝑥) = − 1

2𝜋𝑖

∮︁
|𝜆−𝜆𝑠|=𝛿

(𝐿− 𝜆𝐼)−1𝑓(𝑥)𝑑𝜆
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with a certain 𝛿 > 0. In view of the fact that the resolvent (𝐾 − 𝜆𝐼)−1 of the Cauchy operator
represents an entire function of 𝜆, the projector 𝑃𝑠 from expression of the resolvent (3) takes
the following form

(𝑃𝑠𝑓(𝑥)) = − 1

2𝜋𝑖

∮︁
|𝜆−𝜆𝑠|=𝛿

(𝐿− 𝜆𝐼)−1𝑓(𝑥)𝑑𝜆 =

= − 1

2𝜋𝑖

∮︁
|𝜆−𝜆𝑠|=𝛿

𝜅(𝑥, 𝜆)

∆(𝜆)
< 𝑓(𝜉), 𝐾*(𝐾* − 𝜆̄𝐼)−1𝜎(𝜉) > 𝑑𝜆

= −𝑟𝑒𝑠𝜆𝑠

𝜅(𝑥, 𝜆)

∆(𝜆)
< 𝑓(𝜉), 𝐾*(𝐾* − 𝜆̄𝐼)−1𝜎(𝜉) > . (9)

Whence, 𝑃𝑠 is an integral operator and its kernel has the form

𝑃𝑠(𝑥, 𝜉) = −
𝑚𝑠−1∑︁
𝛾=1

lim
𝜆→𝜆𝑠

1

𝛾!

𝜕𝛾𝜅(𝑥, 𝜆)

𝜕𝜆𝛾
lim
𝜆→𝜆𝑠

1

(𝑚𝑠 − 𝛾 − 1)!

𝜕𝑚𝑠−𝛾−1

𝜕𝜆𝑚𝑠−𝛾−1

(︁
(𝜆−𝜆𝑠)𝑚𝑠𝑀(𝜉,𝜆)

Δ(𝜆)

)︁
,

where
𝑀(𝜉, 𝜆) = 𝐾*(𝐾* − 𝜆̄𝐼)−1𝜎(𝜉).

The numbers

𝐻𝑠,𝑚𝑠−𝛾−1(𝜉) = lim
𝜆→𝜆𝑠

1

(𝑚𝑠 − 𝛾 − 1)!

𝜕𝑚𝑠−𝛾−1

𝜕𝜆𝑚𝑠−𝛾−1

(︁
(𝜆−𝜆𝑠)𝑚𝑠𝑀(𝜉,𝜆)

Δ(𝜆)

)︁
represent the Taylor coefficients of the functions (𝜆−𝜆𝑠)𝑚𝑠𝑀(𝜉,𝜆)

Δ(𝜆)
at the point 𝜆𝑠.

Let us introduce the notation:

𝑦𝑠,𝑗(𝑥) =
1

𝑗!

𝜕𝑗𝜅(𝑥, 𝜆𝑠)

𝜕𝜆𝑗
, 𝑗 = 0,𝑚𝑠 − 1,

𝐸𝑠 = {𝑦𝑠,𝑗(𝑥), 𝑗 = 0,𝑚𝑠 − 1}.
The following statement follows from [8] (p. 29): 𝑑𝑖𝑚𝐸𝑠 = 𝑚𝑠.
Let us investigate properties of the system of functions 𝐸, defined as follows:

𝐸 = {𝐸𝑠 : 𝜆𝑠 − eigenvalue of the operator L}.

Lemma 2. Elements of the chain 𝐸𝑠 satisfy the following differential equations:

𝑙(𝑦𝑠,𝑗) = 𝜆𝑠𝑦𝑠,𝑗(𝑥) + 𝑦𝑠,𝑗−1(𝑥), 𝑗 = 1, ...,𝑚𝑠 − 1 (10)

𝑙(𝑦𝑠,0) = 𝜆𝑠𝑦𝑠,0(𝑥) (11)
and inner boundary conditions (2). Thus the system of functions
𝑦𝑠,0(𝑥), 𝑦𝑠,1(𝑥), ..., 𝑦𝑠,𝑚𝑠−1(𝑥) is a chain of root functions, generated by the eigenfunction 𝑦𝑠,0(𝑥),
which is not identically zero.

Proof of Lemma 2. Let us consider functions 𝑦𝑠,0 = 𝜅(𝑥, 𝜆𝑠). By definition, the function
𝜓(𝑥, 𝜆) = 𝜅(𝑥,𝜆)

Δ(𝜆)
satisfies the equation

𝑙(𝜓(𝑥, 𝜆)) = 𝜆𝜓(𝑥, 𝜆)

and inner boundary conditions

𝜕𝑖−1𝜓(𝑥, 𝜆)

𝜕𝑥𝑖−1
|𝑥=0= 𝛿𝑘𝑖𝜆

∫︁ 1

0

𝜓(𝑥, 𝜆)𝜎(𝑥)𝑑𝑥+ 𝛿𝑘𝑖, 𝑖 = 1, 𝑛.

In other words, the equation
𝑙(𝜅(𝑥, 𝜆)) = 𝜆𝜅(𝑥, 𝜆) (12)
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with inner boundary conditions

𝜕𝑖−1𝜅(𝑥, 𝜆)

𝜕𝑥𝑖−1
|𝑥=0= 𝛿𝑘𝑖(𝜆

∫︁ 1

0

𝜅(𝑥, 𝜆)𝜎(𝑥)𝑑𝑥+ ∆(𝜆)), 𝑖 = 1, 𝑛 (13)

holds. Since we have ∆(𝜆𝑠) = 0 for eigenvalues 𝜆𝑠 then,

𝑙(𝜅(𝑥, 𝜆𝑠)) = 𝜆𝑠𝜅(𝑥, 𝜆𝑠)

and
𝜕𝑖−1𝜅(𝑥, 𝜆𝑠)

𝜕𝑥𝑖−1
|𝑥=0= 𝛿𝑘𝑖𝜆𝑠

∫︁ 1

0

𝜅(𝑥, 𝜆𝑠)𝜎(𝑥)𝑑𝑥, 𝑖 = 1, 𝑛.

Thus, the validity of the formula (11) with inner boundary conditions (2) is proved for 𝑦𝑠,0(𝑥).
Since 𝜅(𝑘−1)(0, 𝜆) = 1 then, 𝑦𝑠,0(𝑥) is not identically zero. Hence, 𝑦𝑠,0(𝑥) is the eigenfunction of
the operator 𝐿, corresponding to the eigenvalue 𝜆𝑠. Now let 𝑚𝑠 − 1 ≥ 𝑗 ≥ 1. Let us prove (10)
and validity of inner boundary conditions. To this end we have to differentiate (12) and (13)
with respect to 𝜆 the corresponding number of times, and then substitute the value 𝜆𝑠 instead
of 𝜆 and take into account the relation (8). Thus, Lemma 2 is proved.

Lemma 3. The identity

< 𝜅(𝜉, 𝜆),𝑀(𝜉, 𝜇) >=
∆(𝜆) − ∆(𝜇)

𝜇− 𝜆

holds for arbitrary complex numbers 𝜆, 𝜇. Note that 𝑀(𝜉, 𝜆) = 𝜎(𝜉) + 𝜆𝑧(𝜉, 𝜆̄). Here 𝑧(𝜉, 𝜆̄) is
the solution of the formally conjugate nonhomogeneous equation 𝑙*(𝑧) = 𝜆̄𝑧(𝜉, 𝜆̄) + 𝜎(𝜉) with
zero conditions when 𝜉 = 1

𝑧(1, 𝜆̄) = ... = 𝑧(𝑛−1)(1, 𝜆̄) = 0.

Proof of Lemma 3. Let us calculate the following scalar product

< 𝑙(𝜅(𝑥, 𝜆)),𝑀(𝑥, 𝜇) >=< 𝑙(𝜅(𝑥, 𝜆)), 𝜎(𝑥) + 𝜇̄𝑧(𝑥, 𝜇̄) >

= 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) > + < 𝜅(𝑥, 𝜆), 𝜇̄𝑙*(𝑧(𝑥, 𝜇̄)) >

+𝜇
𝑛−1∑︁
𝑝=0

(−1)𝑛−𝑝𝜅(𝑝)(0, 𝜆) · 𝑧(𝑛−𝑝−1)(0, 𝜇̄)

= 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) > +𝜇 < 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >

+𝜇
𝑛−1∑︁
𝑝=0

(−1)𝑛−𝑝𝜅(𝑝)(0, 𝜆) · 𝑧(𝑛−𝑝−1)(0, 𝜇̄)

for arbitrary 𝜆, 𝜇. Therefore, the equality

(𝜆− 𝜇) < 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >= 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) >

+𝜇
𝑛−1∑︁
𝑝=0

(−1)𝑛−𝑝𝜅(𝑝)(0, 𝜆) · 𝑧(𝑛−𝑝−1)(0, 𝜇̄)

holds.
In view of the relation (6), we obtain

(𝜆− 𝜇) < 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >= 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) > +𝜇(−1)𝑛−𝑘+1𝑧(𝑛−𝑘)(0, 𝜇̄)𝜅(𝑘−1)(0, 𝜆).

Whence, we obtain for 𝜆 = 𝜇

−𝜇 < 𝜅(𝑥, 𝜇), 𝜎(𝑥) >= 𝜇(−1)𝑛−𝑘+1𝑧(𝑛−𝑘)(0, 𝜇̄)𝜅(𝑘−1)(0, 𝜆).
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It follows from (6) that 𝜅(𝑘−1)(0, 𝜇) ≡ 1. Hence, the equality

(−1)𝑛−𝑘+1𝑧(𝑛−𝑘−1)(0, 𝜇̄) =
−1

𝜅(𝑘−1)(0, 𝜇)
· < 𝜅(𝑥, 𝜇), 𝜎(𝑥) >

holds. Finally,

(𝜆− 𝜇) < 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >= 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) > −𝜇 < 𝜅(𝑥, 𝜇), 𝜎(𝑥) > .

Recall that
∆(𝜆) = 1 − 𝜆 < 𝜅(𝑥, 𝜆), 𝜎(𝑥) > .

As a result, we obtain

(𝜆− 𝜇) < 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >= (∆(𝜇) − ∆(𝜆)).

Whence follows what we require. Lemma 3 is proved.
The analysis of the formula (9) leads to the following notation:

𝐸
′

𝑙 = {ℎ𝑙,𝑚𝑙−1(𝑥), ℎ𝑙,𝑚𝑙−2(𝑥), ..., ℎ𝑙,0(𝑥)},
where

ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) = − 1

(𝑚𝑙 − 1 − 𝑗)!
lim
𝜇→𝜆𝑙

𝜕𝑚𝑙−1−𝑗

𝜕𝜇𝑚𝑙−1−𝑗

(︂
(𝜇− 𝜆𝑙)

𝑚𝑙𝑀(𝑥, 𝜇)

∆(𝜇)

)︂
, 𝑗 = 0, 1, ...,𝑚𝑙 − 1.

Let us introduce the following family of functions

𝐸
′
= {𝐸 ′

𝑙 : 𝜆𝑙 is an arbitrary eigenvalue of the operator L}.
The following theorem holds.

Theorem 3. The system of functions 𝐸 ′ is biorthogonal to the system of functions 𝐸, i.e.

< 𝑦𝑠,𝑖(𝑥), ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) >=

{︂
1, if(𝑠, 𝑖) = (𝑙, 𝑗);
0, if(𝑠, 𝑖) ̸= (𝑙, 𝑗).

Proof of Theorem 3. Let us consider two eigenvalues 𝜆𝑠 and 𝜆𝑙. The pairs (𝑠, 𝑖) and (𝑙, 𝑗)
correspond to them, where 𝑖 = 0, 1, . . . ,𝑚𝑠 − 1 and 𝑗 = 0, 1, . . . ,𝑚𝑙 − 1. Note that the scalar
product

< 𝑦𝑠,𝑖(𝑥), ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) >=

= − lim
𝜆→𝜆𝑠

lim
𝜇→𝜆𝑙

1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
1

(𝑚𝑙 − 1 − 𝑗)!

𝑑𝑚𝑙−1−𝑗

𝑑𝜇𝑚𝑙−1−𝑗

(︂
< 𝜅(𝑥, 𝜆),𝑀(𝑥, 𝜇) >

(𝜇− 𝜆𝑙)
𝑚𝑙

∆(𝜇)

)︂
.

Invoking Lemma 3, we obtain the equality

< 𝑦𝑠,𝑖(𝑥), ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) >=

= − lim
𝜆→𝜆𝑠

lim
𝜇→𝜆𝑙

1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
1

(𝑚𝑙 − 1 − 𝑗)!

𝑑𝑚𝑙−1−𝑗

𝑑𝜇𝑚𝑙−1−𝑗

(︂
∆(𝜆) − ∆(𝜇)

𝜇− 𝜆

(𝜇− 𝜆𝑙)
𝑚𝑙

∆(𝜇)

)︂
. (14)

Let us introduce the notation

𝐻𝑙,𝑘(𝜆) = lim
𝜇→𝜆𝑙

1

𝑘!

𝑑𝑘

𝑑𝜇𝑘

(︂
∆(𝜆) − ∆(𝜇)

𝜆− 𝜇

(𝜇− 𝜆𝑙)
𝑚𝑙

∆(𝜇)

)︂
. (15)

Let us consider the function

𝐹 (𝜇) =
∆(𝜆) − ∆(𝜇)

𝜆− 𝜇

(𝜇− 𝜆𝑙)
𝑚𝑙

∆(𝜇)

and expand it in the vicinity of the point 𝜇 = 𝜆𝑙 into the Taylor series. Then,

𝐹 (𝜇) = 𝐻𝑙,0(𝜆) +𝐻𝑙,1(𝜆)(𝜇− 𝜆𝑙) +𝐻𝑙,2(𝜆)(𝜇− 𝜆𝑙)
2 + · · · +𝐻𝑙,𝑚𝑙−1(𝜆)(𝜇− 𝜆𝑙)

𝑚𝑙−1 + . . . ,
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i.e. 𝐻𝑙,𝑘(𝜆) is the 𝑘-th Taylor coefficient of the corresponding expansion in the neighborhood
𝜇 = 𝜆𝑙. Straightforward calculation of the coefficient of the Taylor series of the function 𝐹 (𝜇)
leads to the following series for 𝑘 = 0, 1, . . . ,𝑚𝑙 − 1 :

𝐻𝑙,𝑘(𝜆) = ∆(𝜆)

(︂
𝐴𝑙,𝑚𝑙−1

1

(𝜆− 𝜆𝑙)𝑘+1
+ 𝐴𝑙,𝑚𝑙−2

1

(𝜆− 𝜆𝑙)𝑘
+ · · · + 𝐴𝑙,𝑚𝑙−𝑘−1

1

𝜆− 𝜆𝑙

)︂
, (16)

where the numbers 𝐴𝑙,𝑚𝑙−1, . . . , 𝐴𝑙,0 are determined from the identity

1

∆(𝜇)
≡ 𝐴𝑙,𝑚𝑙−1

(𝜇− 𝜆𝑙)𝑚𝑙
+

𝐴𝑙,𝑚𝑙−2

(𝜇− 𝜆𝑙)𝑚𝑙−1
+ · · · +

𝐴𝑙,0

𝜇− 𝜆𝑙
+

∞∑︁
𝑞=0

𝐵𝑙,𝑞(𝜇− 𝜆𝑙)
𝑞.

If 𝜆𝑠 ̸= 𝜆𝑙, the correlations (14), (15) and (16) when 𝑖 = 0, 1, . . . ,𝑚𝑙 − 1 provide

< 𝑦𝑠,𝑖(𝑥), ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) >= lim
𝜆→𝜆𝑠

1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
𝐻𝑙,𝑚𝑙−1−𝑗(𝜆) =

= lim
𝜆→𝜆𝑠

1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
(∆(𝜆)

𝑚𝑙−𝑗∑︁
𝑝=1

𝐴𝑙,𝑗+𝑝−1

(𝜆− 𝜆𝑙)𝑝
) =

1

𝑖!

𝑖∑︁
𝑡=0

𝐶𝑡
𝑖∆

(𝑡)(𝜆𝑠)
𝑘+1∑︁
𝑝=1

𝐴𝑖−𝑡,𝑝
𝐴𝑙,𝑚𝑙−𝑘+𝑝−2

(𝜆𝑠 − 𝜆𝑙)𝑝+𝑖−𝑡
= 0,

because ∆(𝑡)(𝜆𝑠) = 0 for any 𝑡 < 𝑚𝑠, and where 𝐶𝑡
𝑖 , 𝐴𝑖−𝑡,𝑝 are element of combinatorics.

Let us consider the case 𝜆𝑠 = 𝜆𝑙. Transform the right-hand side of (16).

𝐻𝑙,𝑘(𝜆) = ∆(𝜆)
𝑘+1∑︁
𝑝=1

𝐴𝑙,𝑚𝑙−𝑘+𝑝−2

(𝜆𝑠 − 𝜆𝑙)𝑝
=

= ∆(𝜆)

(︂
𝐴𝑙,𝑚𝑙−1

1

(𝜆− 𝜆𝑙)𝑘+1
+ 𝐴𝑙,𝑚𝑙−2

1

(𝜆− 𝜆𝑙)𝑘
+ · · · + 𝐴𝑙,𝑚𝑙−𝑘−1

1

𝜆− 𝜆𝑙

)︂
=

= ∆(𝜆)(𝜆−𝜆𝑙)𝑚𝑙−𝑘−1

(︂
𝐴𝑙,𝑚𝑙−1

1

(𝜆− 𝜆𝑙)𝑚𝑙
+ 𝐴𝑙,𝑚𝑙−2

1

(𝜆− 𝜆𝑙)𝑚𝑙−1
+ · · · + 𝐴𝑙,𝑚𝑙−𝑘−1

1

(𝜆− 𝜆𝑙)𝑚𝑙−𝑘

)︂

= ∆(𝜆)(𝜆−𝜆𝑙)𝑚𝑙−𝑘−1

(︃
1

∆(𝜆)
− 𝐴𝑙,𝑚𝑙−2

1

(𝜆− 𝜆𝑙)𝑚𝑙−𝑘−1
− · · · − 𝐴𝑙,0

1

𝜆− 𝜆𝑙
−

∞∑︁
𝑞=𝑚𝑙

𝐵𝑙𝑞(𝜆− 𝜆𝑙)
𝑞

)︃
=

= (𝜆− 𝜆𝑙)
𝑚𝑙−𝑘−1 +

∞∑︁
𝑞=𝑚𝑙

𝑐𝑘𝑙𝑞(𝜆− 𝜆𝑙)
𝑞, 𝑠 = 0, 1. . . . ,𝑚𝑙 − 1. (17)

The relations (14), (15) and (17) provide

< 𝑦𝑠,𝑖(𝑥), ℎ𝑙,𝑚𝑙−1−𝑗(𝑥) >=
1

𝑖!
lim
𝜆→𝜆𝑙

𝑑𝑖

𝑑𝜆𝑖
𝐻𝑙,𝑚𝑙−1−𝑗 =

=
1

𝑖!
lim
𝜆→𝜆𝑙

𝑑𝑖

𝑑𝜆𝑖

(︃
(𝜆− 𝜆𝑙)

𝑗 +
∞∑︁

𝑞=𝑚𝑙

𝑐𝑚𝑙−1−𝑗
𝑙𝑞 (𝜆− 𝜆𝑙)

𝑞

)︃
.

Whence, the required statement follows for 𝑖 = 𝑗.
Theorem 3 is proved.
Thus, it follows from Lemma 2 and Theorem 3 that the system of functions 𝐸 represents a

system of root functions of the operator 𝐿, and the system of functions 𝐸 ′ is biorthogonal to
the system 𝐸. Hence, the system of functions 𝐸 ia a minimal system of functions [2] (p. 171).

Only the existence of a biorthogonal system of functions is proved in [9] for the operator of
the first order without giving the explicit formulae. In the initial terms of the boundary-value
problem of Theorem 3 the biorthogonal system of functions is written out explicitly.
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4. Functional series, generated by a system of root functions

Since the spectrum of the operator 𝐿 is discrete, there is an increasing without limit sequence
{𝑅𝑁} of radii such that the corresponding circles |𝜆| = 𝑅𝑁 do not possess points of the spectrum
of the operator. Let 𝐴𝑁 = {𝜆 ∈ 𝐶 : |𝜆| = 𝑅𝑁} and 𝜎(𝐿) = {𝜆1, 𝜆2, . . . }. In what follows we
consider that 𝑅𝑁 are chosen so that the inequality 𝑑𝑖𝑠𝑡(𝐴𝑁 , 𝜎(𝐿)) > 𝛿 > 0 holds for all 𝑁. Let
us consider a subsequence of partial sums in accordance with the chosen circles

(𝑆𝑁𝑓)(𝑥) = − 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

(𝐿− 𝜆𝐼)−1𝑓(𝑥)𝑑𝜆 (18)

for an arbitrary function 𝑓(·) from the space 𝐿2(0, 1).
Let us substitute the relation (3) into (18) according to the theorem on residues and in view

of the relations (18) and write the partial sum in the form

(𝑆𝑁𝑓)(𝑥) =
∑︁

|𝜆𝑠|<𝑅𝑁

𝑚𝑠−1∑︁
𝑗=0

< 𝑓, ℎ𝑚𝑠−1−𝑗 > 𝑦𝑠,𝑗(𝑥). (19)

According to the right-hand side (19), the sequence of Fourier coefficients 𝑓 ∈ 𝐿2(0, 1) with
respect to the system 𝐸 is defined by the formula

𝑐(𝑓) = {𝑐𝑠,𝑖(𝑓) =< 𝑓, ℎ𝑠,𝑖 >, 𝑖 = 0, 1, . . . ,𝑚𝑠 − 1,

𝜆𝑠 is an arbitrary eigenvalue of the operator L}.
Naturally, the questions on convergence and summability of the subsequence {𝑆𝑁𝑓} with
respect to the norm 𝐿2(0, 1), on the behaviour of the Fourier coefficients 𝑐𝑠,𝑖, etc arise. These
questions are suggested by the theory of trigonometric Fourier series.

5. Completeness of the system of root functions

As it has been demonstrated above, the function 𝜅(𝑥, 𝜆) is a solution to the problem (5)–(6).
Let us partition the whole complex 𝜌-plane into 2𝑛 sectors 𝑆𝜈 , 𝜈 = 0, 1, 2, ..., 2𝑛 − 1,

determined by the inequality
𝜈𝜋

𝑛
6 𝑎𝑟𝑔(𝜌) 6

(𝜈 + 1)𝜋

𝑛
.

Denote by 𝜔1, 𝜔2, ..., 𝜔𝑛 all different roots in the 𝑛-th power −1. While 𝜔* will indicate one of
the roots such that

𝑅𝑒(𝜔*𝜌) = max{𝑅𝑒(𝜔1𝜌), 𝑅𝑒(𝜔2𝜌), ..., 𝑅𝑒(𝜔𝑛𝜌)}
holds. Note that 𝑅𝑒(𝜔*𝜌) > 0 holds for all 𝜌.

It follows from [8] (p. 55) that the general solution (5) can be written as follows

𝜅(𝑥, 𝜆) = 𝑐1 exp(𝜔1𝜌𝑥) + ...+ 𝑐𝑛 exp(𝜔𝑛𝜌𝑥), (20)

where 𝜆 = −𝜌𝑛;𝜔𝑛
𝑖 = −1, 𝑖 = 1;𝑛 and {𝑐𝑖, 𝑖 = 1;𝑛} are some constants. Substituting (20) into

(6), we obtain that

𝜅(𝑥, 𝜆) =
1

𝑛

𝑛∑︁
𝑝=1

exp(𝜔𝑝𝜌𝑥)

(𝜔𝑝𝜌)𝑘−1
.

The estimate

𝐶1
exp(𝑅𝑒(𝜔*𝜌𝑥))

| 𝜌 |𝑘−1
6| 𝜅(𝑥, 𝜆) |6 𝐶2

exp(𝑅𝑒(𝜔*𝜌𝑥))

| 𝜌 |𝑘−1
, (21)

holds when | 𝜌 |→ ∞ from the resulting formula for some constants 𝐶1 and 𝐶2.
Here we investigate the problem of completeness of the system 𝐸 in the functional space

𝐿2(0, 1). We will need the following lemma:
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Lemma 4. The set of functions

𝐷 = {𝜅(𝑥, 𝜇), 𝜇 — arbitrary complex number }
is dense in the space 𝐿2(0, 1).

Proof of Lemma 4. To this end, it is sufficient to demonstrate that for any ℎ(𝑥) ∈ 𝐿2(0, 1)
from < 𝜅(𝑥, 𝜇), ℎ(𝑥) >= 0,∀𝜇 it follows that ℎ(𝑥) = 0 almost everywhere in 𝐿2(0, 1). The
formulae (5)–(6) provide that 𝜅(𝑥, 𝜇) is a function analytic in 𝜇. Then, 𝜅(𝑥, 𝜇) can be expanded
into the following series:

𝜅(𝑥, 𝜇) =
∞∑︁
𝑖=0

𝐴𝑖(𝑥)𝜇𝑖,

where
𝑙(𝐴0(𝑥)) = 0, 𝐴

(𝜈−1)
0 (0) = 𝛿𝑘𝜈 , 𝜈 = 1, 𝑛

and for 𝑖 = 0, 1, ...

𝑙(𝐴𝑖+1(𝑥)) = 𝐴𝑖(𝑥), 𝐴
(𝜈−1)
𝑖+1 (0) = 0, 𝜈 = 1, 𝑛.

One can readily verify that

𝐴𝑖(𝑥) =
1

(𝑛𝑖+ 𝑘 − 1)!
𝑥𝑛𝑖+𝑘−1, 𝑖 = 0, 1, . . . .

Then, it follows that < 𝐴𝑖(𝑥), ℎ(𝑥) >= 0, 𝑖 = 0, 1, ... for any ℎ(𝑥) ∈ 𝐿2(0, 1) from <
𝜅(𝑥, 𝜇), ℎ(𝑥) >= 0,∀𝜇. Since the series

∑︀∞
𝑖=1

1
𝑛𝑖+𝑘−1

diverges, the system of functions {𝐴𝑖(𝑥)}∞𝑖=0

is complete in 𝐿2(0, 1) according to the Muntz theorem. Thus, ℎ(𝑥) = 0 almost everywhere in
𝐿2(0, 1), i.e. the set of functions 𝐷 is dense in 𝐿2(0, 1). Which was to be proved.

Proof of Theorem 1. It is sufficient to approximate an arbitrary element from 𝐷 with a
prescribed accuracy by linear combinations from 𝐸. To this end we consider

𝑆𝑁𝜅(𝑥, 𝜇) = − 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

< 𝜅(𝑥, 𝜇),𝑀(𝑥, 𝜆) >

∆(𝜆)
𝜅(𝑥, 𝜆)𝑑𝜆.

Invoking Lemma 3, let us rewrite the latter relation

𝑆𝑁𝜅(𝑥, 𝜇) =
1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

∆(𝜆) − ∆(𝜇)

𝜆− 𝜇

𝜅(𝑥, 𝜆)

∆(𝜆)
𝑑𝜆

=
1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆− 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

∆(𝜇)

∆(𝜆)

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆.

Using the Cauchy integral form, we obtain

𝑆𝑁𝜅(𝑥, 𝜇) = 𝜅(𝑥, 𝜇) − 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

∆(𝜇)

∆(𝜆)

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆.

Let us denote the inaccuracy 𝜅(𝑥, 𝜇) − 𝑆𝑁𝜅(𝑥, 𝜇) by 𝑄𝑁(𝑥, 𝜇). Then, we have the integral
representation

𝑄𝑁(𝑥, 𝜇) =
1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

∆(𝜇)

∆(𝜆)

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆

for the inaccuracy. Let us obtain the sufficient condition on 𝜎(𝑥) ∈ 𝐿2(0, 1) in order to

lim
𝑅𝑁→∞

‖𝑄𝑁(𝑥, 𝜇)‖ = 0,

where ‖·‖ is the norm of the space 𝐿2(0, 1). Let us consider the norm of the inaccuracy 𝑄𝑁(𝑥, 𝜇)

‖𝑄𝑁(𝑥, 𝜇)‖ =

(︂∫︁ 1

0

| 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

∆(𝜇)

∆(𝜆)

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆 |2 𝑑𝑥

)︂ 1
2

.
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To begin with, we estimate |∆(𝜆)| on the circles |𝜆| = 𝑅𝑁 when 𝑅𝑁 → ∞. Let us assume that
there is a limit lim𝜀→1−0

1
𝜀

∫︀ 1

𝜀
𝜎(𝑥)𝑑𝑥 = 𝛼1 ̸= 0. Then the lower estimate

|∆(𝜆)| ≥ 𝑐1𝑅
𝑛−𝑘+1

𝑛
𝑁 exp(𝑅𝑒(𝜔*𝜌)) > 0 (22)

holds for the function ∆(𝜆).
Writing 𝜆 in the form 𝜆 = 𝑅𝑁 exp(𝑖𝜃) and due to (21) and (22), we obtain

‖𝑄𝑁(𝑥, 𝜇)‖ 6
| ∆(𝜇) |

2𝜋

(︂∫︁ 1

0

|
∮︁
|𝜆|=𝑅𝑁

1

∆(𝜆)

𝜅(𝑥, 𝜆)

𝜆− 𝜇
𝑑𝜆 |2 𝑑𝑥

)︂ 1
2

6
| ∆(𝜇) |

2𝜋

(︂∫︁ 1

0

|
∫︁ 2𝜋

0

| 𝜅(𝑥, 𝜆) |
|| 𝜆 | − | 𝜇 || · | ∆(𝜆) |

𝑅𝑁𝑑𝜃 |2 𝑑𝑥
)︂ 1

2

6 𝐶 | ∆(𝜇) |

⎛⎜⎝∫︁ 1

0

|
∫︁ 2𝜋

0

exp(𝑅𝑒(𝜔*𝜌𝑥))

𝑅
𝑘−1
𝑛

𝑁

𝑅𝑁(1− | 𝜇
𝑅𝑁

|) ·𝑅
𝑛−𝑘+1

𝑛
𝑁 exp(𝑅𝑒(𝜔*𝜌))

𝑅𝑁𝑑𝜃 |2 𝑑𝑥

⎞⎟⎠
1
2

= 𝐶
| ∆(𝜇) |
𝑅𝑁

(︃∫︁ 1

0

|
∫︁ 2𝜋

0

exp(𝑅𝑒(𝜔*𝜌(𝑥− 1)))

(1− | 𝜇
𝑅𝑁

|)
𝑑𝜃 |2 𝑑𝑥

)︃ 1
2

for the norm 𝑄𝑁(𝑥, 𝜇). Thus, we arrive to the limiting relation

lim
𝑅𝑁→∞

‖𝑄𝑁(·, 𝜇)‖ = 0.

The theorem is proved.

Lemma 5. Let us assume that there is a nonzero limit

lim
𝜀→1−0

1

1 − 𝜀

∫︁ 1

𝜀

𝜎(𝑥)𝑑𝑥 = 𝛼.

Then, the limiting relation

lim
𝑅𝑁→∞

‖𝜅(𝑥, 𝜇) −
∑︁

|𝜆𝑠|<𝑅𝑁

𝑚𝑠−1∑︁
𝑗=0

< 𝜅(𝑡, 𝜇), ℎ𝑠,𝑚𝑠−1−𝑗(𝑡) > 𝑦𝑠,𝑗(𝑥)‖ = 0

holds for any complex number 𝜇.

Lemma 5 and the fact that 𝐷 = 𝐿2(0, 1) provide the statement of Theorem 1.

6. The inverse problem

The problem on eigenvalues
𝑙(𝑦) = 𝜆𝑦(𝑥), 𝑥 ∈ (0, 1), (23)

𝑦(𝜈−1)(0) − 𝛿𝜈𝑘

∫︁ 1

0

(𝑙(𝑦))𝜎(𝑥)𝑑𝑥 = 0, 𝜈 = 1;𝑛 (24)

is studied. Given the complete set of eigenvalues {𝜆𝑠, 𝑠 = 1, 2, ...} of the boundary problem
(23)-(24). Restore the boundary function 𝜎(𝑥) from 𝐿2(0, 1).

Corollary 1 entails the statement about the direct problem

Theorem 4. For any boundary function 𝜎(𝑥) from 𝐿2(0, 1), the identity
∞∑︁
𝑠=1

1

𝜆𝑠
=

∫︁ 1

0

𝜅(𝑥, 0)𝜎(𝑥)𝑑𝑥

holds.
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The main result of the section is the algorithm for finding the boundary function 𝜎(𝑥) by
the spectrum {𝜆𝑠, 𝑠 = 1, 2, ...} :

Let us assume that the sequence of nonzero complex numbers {𝜆𝑠, 𝑠 = 1, 2, ...} is given
without finite accumulation points posessing the following properties:

1)the series
∑︀∞

𝑠=1
1
𝜆𝑠

converges
2)the system of functions {𝜅(𝑥, 𝜆𝑠), 𝑠 = 1, 2, ...} is complete and minimal in 𝐿2(0, 1)
3) the following series

∑︀∞
𝑠=1

1
𝜆𝑠
ℎ(𝑥, 𝜆𝑠) converges to {𝜅(𝑥, 𝜆𝑠), 𝑠 = 1, 2, ...} in the sense 𝐿2(0, 1)

for the biorthogonal system of functions {ℎ(𝑥, 𝜆𝑠), 𝑠 = 1, 2, ...}.
Then, the boundary function 𝜎(𝑥) is restored by the formula

𝜎(𝑥) =
∞∑︁
𝑠=1

1

𝜆𝑠
ℎ(𝑥, 𝜆𝑠)

and belongs to 𝐿2(0, 1).

7. On identities for eigenvalues

Let us denote by {𝜆𝑘}∞𝑘=1 eigenvalues of the operator 𝐿, numbered in the increasing order
with respect to the module in view of their multiplicities, and by 𝑅(𝜆) = (𝐿−𝜆𝐼)−1 we indicate
the resolvent of the operator 𝐿.

According to the formula (3)

𝑅(𝜆)𝑓(𝑥) = (𝐾 − 𝜆𝐼)−1𝑓(𝑥) + 𝜓(𝑥, 𝜆) < 𝑓 ;𝐾*(𝐾* − 𝜆̄𝐼)−1𝜎 > . (25)

Let us calculate the trace of (25). To begin with, we calculate the trace of the right-hand
side (25). The trace of the first addend equals to zero, since the first addend is the Volterra
operator. The trace of the second addend, i.e.

𝑆𝑝(𝐾) =
∫︀ 1

0
(𝐾*(𝐾* − 𝜆𝐼)−1𝜎(𝑡))(𝐿(𝐿− 𝜆𝐼)−1𝜙(𝑡))𝑑𝑡

=< 𝐿(𝐿− 𝜆𝐼)−1𝜙,𝐾*(𝐾* − 𝜆𝐼)−1𝜎 >,

where 𝐾𝑓 =
∫︀ 1

0
(𝐾*(𝐾* − 𝜆𝐼)−1𝜎(𝑡))(𝐿(𝐿− 𝜆𝐼)−1𝜙(𝑥))𝑓(𝑡)𝑑𝑡.

Since the trace of the right-hand side exists in the identity (25), then the trace of the left-hand
side exists as well and the following identity holds

𝑆𝑝(𝑅(𝜆)) =
∞∑︁
𝑘=1

1

𝜆𝑘 − 𝜆
=< 𝐿(𝐿− 𝜆𝐼)−1𝜙,𝐾*(𝐾* − 𝜆𝐼)−1𝜎 > . (26)

The identity (26) holds for all 𝜆 from 𝑈 = {𝜆 : |𝜆| < |𝜆1|}, and the following expansion series
hold:

1
𝜆𝑘−𝜆

= 1
𝜆𝑘

( 1
1− 𝜆

𝜆𝑘

) = 1
𝜆𝑘

(1 + 𝜆
𝜆𝑘

+ ( 𝜆
𝜆𝑘

)2 + ...+ ( 𝜆
𝜆𝑘

)𝑛 + ...),

𝐾*(𝐾* − 𝜆𝐼)−1 = (𝐼 − 𝜆(𝐾*)−1)−1 = 𝐼 + 𝜆(𝐾*)−1 + 𝜆2(𝐾*)−2 + ...+ 𝜆𝑗(𝐾*)−𝑗 + ...,

𝐿(𝐿− 𝜆𝐼)−1 = (𝐼 − 𝜆(𝐿)−1)−1 = 𝐼 + 𝜆(𝐿)−1 + 𝜆2(𝐿)−2 + ...+ 𝜆𝑗(𝐿)−𝑗 + ....

Thus, we arrived to the following identity equivalent to (26):
∞∑︁
𝑘=1

∞∑︁
𝑙=0

(
1

𝜆𝑘
)𝑙+1𝜆𝑙 =<

∞∑︁
𝑗=0

𝜆𝑗(𝐿)−𝑗𝜙,

∞∑︁
𝑖=0

𝜆𝑖(𝐾*)−𝑖𝜎 > . (27)

Since (27) holds for all 𝜆 from 𝑈 = {𝜆 : |𝜆| < |𝜆1|} then, equating coefficients of 𝜆𝑙, we
obtain that

∞∑︁
𝑘=1

(
1

𝜆𝑘
)𝑙+1 =

∞∑︁
𝑗+𝑖=𝑙

< (𝐿)−𝑗𝜙, (𝐾*)−𝑖𝜎 > .

for any 𝑙 ∈ 𝑍+.
Let us formulate the obtained results in the form of the following theorem.
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Theorem 5. Let {𝜆𝑘}∞𝑘=1 be eigenvalues of the problem (23)–(24), numbered in the increasing
order in view of their multiplicities then, the following identity holds for any 𝑙 ∈ 𝑍+ :

∞∑︁
𝑘=1

(
1

𝜆𝑘
)𝑙+1 =

∞∑︁
𝑗+𝑖=𝑙

< (𝐿)−𝑗𝜙, (𝐾*)−𝑖𝜎 > .

In particular, when 𝑙 = 0 we obtain
∞∑︁
𝑘=1

1

𝜆𝑘
=< 𝜙, 𝜎 > .
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