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PERTURBATION OF THE SHRÖDINGER OPERATOR BY A

NARROW POTENTIAL

R.R. GADYL’SHIN, I.KH. KHUSNULLIN

Abstract. A discrete spectrum of the Schrödinger operator perturbed by a potential
on the real line is studied. The potential depends on two small parameters. One of the
parameters describes the length of the support of the potential and the inverse of the other
parameter corresponds to the magnitude of the potential.
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1. Introduction

The paper is considers perturbation of a discrete spectrum of a lower semibounded selfadjoint
Schrödinger operator in 𝐿2(R):

ℋ0 := − 𝑑2

𝑑𝑥2
+𝒲,

where 𝒲 is the operator of multiplication by a real function 𝑊 (𝑥) locally integrable in R such that
∞∫︁

−∞

𝑊 (𝑥)|𝑦(𝑥)|2𝑑𝑥 > 𝑐‖𝑦‖2𝐿2(R), 𝑐 > −∞ (1)

for any functions 𝑦 from 𝐿2(R), for which the integral exists.
The perturbed selfadjoint operator (considered also in 𝐿2(R)) has the form:

ℋ𝜇,𝜀 := − 𝑑2

𝑑𝑥2
+𝒲 + 𝜇−1𝒱𝜀,

where 𝒱𝜀 is the operator of multiplication by the function 𝑉
(︀
𝑥
𝜀

)︀
, 𝑉 (𝜉) is the real finite function from

𝐿∞(R),
𝜇 > 0, 0 < 𝜀≪ 1.

Operators ℋ0 and ℋ𝜇,𝜀 are understood as the Friedrichs extensions (see, e.g., [1, Chapter VI, S 2])
of the corresponding symmetric differential expressions

𝐻0 = − 𝑑2

𝑑𝑥2
+𝑊 (𝑥), 𝐻𝜇,𝜀 = − 𝑑2

𝑑𝑥2
+𝑊 (𝑥) + 𝜇−1𝑉

(︁𝑥
𝜀

)︁
with 𝐶∞

0 (R).
Namely, let us denote by (·, ·)𝐿2(R) a scalar product in 𝐿2(R), and by h0 and h𝜇,𝜀 quadratic form on

𝐶∞
0 (R), generated by the operators 𝐻0 and 𝐻𝜇,𝜀:

h0[𝑦] := (𝐻0𝑦, 𝑦)𝐿2(R) , h𝜇,𝜀[𝑦] = (𝐻𝜇,𝜀𝑦, 𝑦)𝐿2(R) .

Since the differential expressions 𝐻0 and 𝐻𝜇,𝜀 are symmetric, defined densely in 𝐿2(R) and lower
bounded, then the quadratic forms h0 and h𝜇,𝜀 are symmetric as well, defined densely in 𝐿2(R) and
lower semibounded, these forms being closable (see, e.g., [1, Chapter VI, Theorem 1.27]). Let us
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define operators ℋ0 and ℋ𝜇,𝜀 as selfadjoint lower semibounded operators in 𝐿2(R), associated with
the closure of these forms (see, e.g., [1, Chapter VI, Theorem 2.6]).

The paper investigates the behaviour of eigenvalues of the operator ℋ𝜇,𝜀 when 𝜇, 𝜀→ 0.

Similar problems were investigated in [2] for the case when 𝜇 = 𝜀−2, and
∞∫︀

−∞
𝑉 (𝑡) 𝑑𝑡 = 0.

2. Formulation of results

In the following section the below two statements will be proved.

Lemma 1. Eigenvalues of operators ℋ0 (if they exist) are simple.

Lemma 2. Let
𝜀𝜇−1 = 𝑜 (1) . (2)

Then ℋ𝜇,𝜀 → ℋ0 if 𝜀→ 0 in the generalized sense.

These two lemmas and [1, Chapter IV, Theorem 3.16] entail

Theorem 1. Let 𝜆0 be an eigenvalue of the operator ℋ0 and the condition (2) hold. Then, the
unique and simple eigenvalue 𝜆𝜇,𝜀 of the operator ℋ𝜇,𝜀 converges to it, and for the corresponding
projector 𝒫𝜇,𝜀 there is a convergence in norm to the projector 𝒫0, corresponding to the eigenvalue 𝜆0.

The work contains mainly the construction of complete asymptotics of the eigenvalue 𝜆𝜇,𝜀 when
𝜇, 𝜀 → 0. To this end, let us make an additional assumption that 𝑉 ∈ 𝐶∞

0 (R), the function 𝑊 is
infinitely differentiable in some vicinity of zero (i.e. there is 𝛿 > 0 such that 𝑊 ∈ 𝐶∞[−𝛿, 𝛿]). To
justify the asymptotics strictly we will need a more rigid condition than (2). Namely, let us consider
that there is 𝛾 > 0 such that

𝜀𝜇−1 = 𝑂 (𝜀𝛾) . (3)

In what follows we denote by 𝜓0 the eigenfunction of the operator ℋ0 normed in 𝐿2(R), correspond-
ing to the eigenvalue 𝜆0, and use the following notation:

⟨𝑔(𝑡)⟩ :=
∞∫︁

−∞

𝑔(𝑡) 𝑑𝑡.

The following theorem is proved in the paper.

Theorem 2. The eigenvalue 𝜆𝜇,𝜀 of the operator ℋ𝜇,𝜀, converging to 𝜆0, has the asymptotics

𝜆𝜇,𝜀 = 𝜆0 +
∞∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝜀𝑖𝜇−𝑗𝜆𝑖,𝑗 , (4)

where
𝜆1,1 = 𝜓2

0(0) ⟨𝑉 (𝑡)⟩ . (5)

If
𝜓0(0) ⟨𝑉 (𝑡)⟩ = 0 (6)

then,
𝜆𝑖,𝑖 = 0. (7)

If
⟨𝑉 (𝑡)⟩ = 0 (8)

then,
𝜆2,1 = 2𝜓0(0)𝜓

′
0(0) ⟨𝑡𝑉 (𝑡)⟩ . (9)

If
𝜓0(0) = 0, (10)

then

𝜆𝑖+1,𝑖 =0, (11)

𝜆3,1 =(𝜓′
0(0))

2
⟨︀
𝑡2𝑉 (𝑡)

⟩︀
. (12)
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The theorem entails.

Corollary 1. If the equality (8) holds, then

𝜆𝜇,𝜀 = 𝜆0 + 𝜀2𝜇−1𝜆2,1 +𝑂
(︀
𝜀3𝜇−2

)︀
,

where 𝜆2,1 is defined by the equality (9).
If the equality (10) holds then

𝜆𝜇,𝜀 = 𝜆0 + 𝜀3𝜇−1𝜆3,1 +𝑂
(︀
𝜀4𝜇−2

)︀
,

where 𝜆3,1 is defined by the equality (12).

3. Proof of Lemmas 1 and 2

Proof of Lemma 1. Let us assume that the operator ℋ0 has two linearly independent eigenfunctions
𝑦1, 𝑦2, corresponding to the eigenvalue 𝜆0. Hence,

(𝑦′𝑖, 𝑣
′)𝐿2(R) = (𝜆𝑦𝑖 −𝑊𝑦𝑖, 𝑣)𝐿2(R) (13)

for any function 𝑣 ∈ 𝑊 1
2 (R). Let us denote by 𝑤 the Wronskian determinant of the functions 𝑦1 and

𝑦2:

𝑤 := 𝑦1𝑦
′
2 − 𝑦2𝑦

′
1.

By definition of the derivative of the generalized function (see, e.g., [3]), for any function 𝜙 ∈ 𝐶∞
0 (R)

one has (︀
𝑤′, 𝜙

)︀
= −

(︀
𝑦1𝑦

′
2 − 𝑦2𝑦

′
1, 𝜙

′)︀ .
Since 𝑦1, 𝑦2 ∈𝑊 1

2 (R), then 𝑦1𝑦′2, 𝑦2𝑦′1 ∈ 𝐿1(R). Therefore,(︀
𝑤′, 𝜙

)︀
= −

(︀
𝑦1𝑦

′
2, 𝜙

′)︀
𝐿2(R)

+
(︀
𝑦2𝑦

′
1, 𝜙

′)︀
𝐿2(R)

. (14)

Since 𝑦𝑖 ∈𝑊 1
2 (R) then, for any function 𝐶∞

0 (R) one has:

(︀
𝑦1𝑦

′
2, 𝜙

′)︀
𝐿2(R)

=

∞∫︁
−∞

𝑦1𝑦
′
2𝜙

′𝑑𝑥 =

∞∫︁
−∞

𝑦′2
(︀
(𝑦1𝜙)

′ − 𝑦′1𝜙
)︀
𝑑𝑥

=
(︀
𝑦′2, (𝑦1𝜙)

′)︀
𝐿2(R)

−
∞∫︁

−∞

𝑦′1𝑦
′
2𝜙𝑑𝑥.

Likewise, (︀
𝑦′1𝑦2, 𝜙

′)︀
𝐿2(R)

=
(︀
𝑦′1, (𝑦2𝜙)

′)︀
𝐿2(R)

−
∞∫︁

−∞

𝑦′1𝑦
′
2𝜙𝑑𝑥.

The latter two equalities and (14) entail(︀
𝑤′, 𝜙

)︀
= −

(︀
𝑦′2, (𝑦1𝜙)

′)︀
𝐿2(R)

+
(︀
𝑦′1, (𝑦2𝜙)

′)︀
𝐿2(R)

.

This equality together with (13) provide sequentially that(︀
𝑤′, 𝜙

)︀
=− (𝜆𝑦2 −𝑊𝑦2, 𝑦1𝜙)𝐿2(R) + (𝜆𝑦1 −𝑊𝑦1, 𝑦2𝜙)𝐿2(R) = 0.

Whence, it follows that 𝑤 ≡ 𝐶, where 𝐶 is a constant. However, since 𝑤 ∈ 𝐿1(R), it is obvious that
𝐶 = 0. It means that 𝑦1, 𝑦2 are linearly dependent. It follows from the resulting contradiction that
Lemma 1 holds true.

Proof of Lemma 2. It follows from the definition of the forms h0 and h𝜇,𝜀 and the function 𝑉 that

|(h𝜇,𝜀 − h0)[𝑦]| = 𝜇−1

⃒⃒⃒⃒
⃒⃒

∞∫︁
−∞

𝑉
(︁𝑥
𝜀

)︁
|𝑦(𝑥)|2𝑑𝑥

⃒⃒⃒⃒
⃒⃒ 6 𝐶𝜇−1

𝑎𝜀∫︁
−𝑎𝜀

|𝑦(𝑥)|2𝑑𝑥,
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where 𝐶 > 0 are some fixed numbers, 𝑎 > 0 is any number such that supp𝑉 (𝑥) ⊂ [−𝑎, 𝑎]. Similarly
to the proof of the Friedrichs inequality, one can easily prove the following its analogue (see, e.g., [4]):

𝜀𝑎∫︁
−𝜀𝑎

|𝑦|2𝑑𝑥 6 𝐶1𝜀

∞∫︁
−∞

(|𝑦′|2 + |𝑦|2)𝑑𝑥,

where 𝐶1 is a constant independent of 𝑦 ∈ 𝐶∞
0 (R). Hence,

|(h𝜇,𝜀 − h0)[𝑦]| 6 𝐶2𝜇
−1𝜀

∞∫︁
−∞

(|𝑦′|2 + |𝑦|2)𝑑𝑥.

Since

h0[𝑦] =

∞∫︁
−∞

|𝑦′|2𝑑𝑥+

∞∫︁
−∞

𝑊 (𝑥)|𝑦(𝑥)|2𝑑𝑥,

by virtue of (1) one obtains the following estimate:

|(h𝜇,𝜀 − h0)[𝑦]| 6− 𝐶2𝜇
−1𝜀

∞∫︁
−∞

(𝑊 (𝑥)− 1)|𝑦(𝑥)|2𝑑𝑥+ 𝐶2𝜇
−1𝜀h0[𝑦]

6𝐶2𝜇
−1𝜀

⎛⎝|𝑐− 1|
∞∫︁

−∞

|𝑦(𝑥)|2𝑑𝑥+ h0[𝑦]

⎞⎠ .

Since by virtue of (2) the quadratic forms h0 and h𝜇,𝜀 are defined densely in 𝐿2(R), lower bounded
and closable, and 𝜇−1𝜀→ 0 when 𝜀→ 0 then, it follows from the latter estimate and [1, Chapter VI,
Theorem 3.6] that the statement of the lemma holds true.

4. Construction of asymptotics

The matched asymptotic expansions approach [5] will be used in constructing asymptotics of the
eigenvalue 𝜆𝜇,𝜀 and the corresponding eigenfunction 𝜓𝜇,𝜀.

Theorem 1 entails that for the eigenfunction 𝜓𝜇,𝜀 normed in 𝐿2(R) and corresponding to the eigen-
value 𝜆𝜇,𝜀 converging to 𝜆0, there is a convergence 𝜓𝜇,𝜀 → 𝜓0 in 𝐿2(R). Therefore, outside the vicinity
of the origin of coordinates (where the perturbation of the operator ℋ𝜇,𝜀 is concentrated), we will look
for the asymptotics (external decompositions) of the function 𝜓𝜇,𝜀 similarly to (4) in the form

𝜓𝑒𝑥,±(𝑥, 𝜇, 𝜀) =𝜓0(𝑥) +
∞∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝜀𝑖𝜇−𝑗𝜓±
𝑖,𝑗(𝑥), 𝑥 ∈ R±. (15)

Outside the vicinity of zero 𝑉
(︀
𝑥
𝜀

)︀
≡ 0. Since external decompositions will be used outside the vicinity

of zero as well, by virtue of the definition of the operators ℋ𝜇,𝜀, ℋ0 we obtain the following equations
(in a generalized sense) for external decompositions:

𝐻0𝜓
𝑒𝑥,± = 𝜆𝜇,𝜀𝜓𝑒𝑥,±, 𝑥 ∈ R±.

Here and in what follows, R± = {𝑥 : ±𝑥 > 0}. Substituting the series (4) and (15) into these equations,
collecting the coefficients of 𝜀, 𝜇 in the same powers, we obtain the equality, which obviously holds

𝐻0𝜓0 = 𝜆0𝜓0 (16)

and the following equations for the remaining coefficients of external decompositions:

𝜀𝑖𝜇−𝑗 : 𝐻0𝜓
±
𝑖,𝑗 =𝜆𝑖,𝑗𝜓0 + 𝜆0𝜓

±
𝑖,𝑗 +

𝑖−1∑︁
𝑝=1

𝑗−1∑︁
𝑞=1

𝜆𝑝,𝑞𝜓
±
𝑖−𝑝,𝑗−𝑞, 𝑥 ∈ R±, (17)
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where 𝑖 ≥ 1, 1 6 𝑗 6 𝑖. In what follows we impose the normalizing conditions:

0∫︁
−∞

𝜓−
𝑖,𝑗𝜓0 𝑑𝑥+

∞∫︁
0

𝜓+
𝑖,𝑗𝜓0 𝑑𝑥 = 0 (18)

on the coefficients 𝜓±
𝑖,𝑗 .

Solutions of equations (17) are considered in𝑊 2
2,𝑙𝑜𝑐 (R±)∩𝐿2(R±). Since the function𝑊 is infinitely

differentiable in the vicinity of zero, then for any constants 𝜆𝑖,𝑗 the solutions 𝜓±
𝑖,𝑗 of the system of

recurrent equations (17) from 𝑊 2
2,𝑙𝑜𝑐 (R±) belong to 𝐶∞[0, 𝛿], 𝐶∞[−𝛿, 0], respectively.

It is natural to look for the asymptotics (external decomposition) of the function 𝜓𝜇,𝜀 in the vicinity
of the origin of coordinates in the form of the expansion in functions depending on the variable
𝜉 = 𝑥𝜀−1, corresponding to the length of the support of the perturbed potential 𝑉

(︀
𝑥
𝜀

)︀
.

The structure of the inner decomposition 𝜓𝑖𝑛(𝜉, 𝜇, 𝜀) is determined on the basis of the following
considerations. The Taylor series have the following form at zero of coefficients of external decompo-
sitions:

𝜓0(𝑥) =
∞∑︁
𝑘=0

𝑃
(0)
𝑘 (𝑥), 𝑃

(0)
𝑘 (𝑥) =

𝜓
(𝑘)
0 (0)

𝑘!
𝑥𝑘, 𝑥→ 0,

𝜓±
𝑖,𝑗(𝑥) =

∞∑︁
𝑘=0

𝑃
(𝑖,𝑗,±)
𝑘 (𝑥), 𝑃

(𝑖,𝑗,±)
𝑘 (𝑥) =

(︁
𝜓±
𝑖,𝑗

)︁(𝑘)
(0)

𝑘!
𝑥𝑘, 𝑥→ ±0.

(19)

In (15) substituting instead of the functions 𝜓0(𝑥) and 𝜓±
𝑖,𝑗(𝑥) their asymptotics at zero (19) and

substituting the variable 𝑥 = 𝜉𝜀, we obtain that

𝜓𝑒𝑥,±(𝑥, 𝜇, 𝜀) =
∞∑︁
𝑖=1

𝜀𝑖𝑉𝑖,0(𝜉) +
∞∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝜀𝑖𝜇−𝑗𝑉 ±
𝑖,𝑗(𝜉), 𝜉𝜀→ ±0, (20)

where

𝑉𝑖,0(𝜉) =𝑃
(0)
𝑖 (𝜉), 𝑉 ±

𝑖,𝑗(𝜉) =

𝑖−𝑗∑︁
𝑞=0

𝑃 (𝑖−𝑞,𝑗,±)
𝑞 (𝜉), 1 6 𝑗 6 𝑖. (21)

In accordance with the matched asymptotic expansions approach, we look for the inner decomposition
in the form

𝜓𝑖𝑛(𝜉, 𝜇, 𝜀) =
∞∑︁
𝑖=1

𝜀𝑖𝑣𝑖,0(𝜉) +
∞∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝜀𝑖𝜇−𝑗𝑣𝑖,𝑗(𝜉), (22)

where
𝑣𝑖,0(𝜉) = 𝑉𝑖,0(𝜉), 𝑣𝑖,𝑗(𝜉) = 𝑉 ±

𝑖,𝑗(𝜉), 𝜉 → ±∞. (23)

Substituting the series (4) and (22) into the equation

𝐻𝜇,𝜀𝜓
𝑖𝑛 = 𝜆𝜇,𝜀𝜓𝑖𝑛,

substituting the function 𝑊 (𝑥) there by its expansion into the Taylor series at zero, turning to the
variable 𝜉 = 𝑥𝜀−1 and collecting the coefficients of 𝜀, 𝜇 in the same powers, we obtain the following
equations for coefficients of the inner decomposition:

𝜀𝑖 :
𝑑2𝑣𝑖,0
𝑑𝜉2

=
𝑖−2∑︁
𝑡=0

𝑊 (𝑖−𝑡−2)(0)

(𝑖− 𝑡− 2)!
𝜉𝑖−𝑡−2𝑣𝑡,0 − 𝜆0𝑣𝑖−2,0, 𝑖 > 0, (24)

𝜀𝑖𝜇−𝑗 :
𝑑2𝑣𝑖,𝑗
𝑑𝜉2

=
𝑖−2∑︁
𝑡=0

𝑊 (𝑖−𝑡−2)(0)

(𝑖− 𝑡− 2)!
𝜉𝑖−𝑡−2𝑣𝑡,𝑗 − 𝜆0𝑣𝑖−2,𝑗+

+ 𝑉 (𝜉)𝑣𝑖−2,𝑗−1 +

𝑖−1∑︁
𝑝=1

𝑗−1∑︁
𝑞=1

𝜆𝑝,𝑞𝑣𝑖−𝑝−2,𝑗−𝑞, 1 6 𝑗 6 𝑖.

(25)
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For the sake of brevity, here and in what follows the coefficients 𝜆𝑝,𝑠, 𝑣𝑝,𝑠, whose indices do not
correspond to the indices from (4) and (20) are taken as vanishing.

Thus, matching of asymptotic decompositions is reduced to the proof of existence of constants 𝜆𝑖,𝑗
such that the equalities (23) hold for solutions of equations (17), (18) and equations (24), (25).

By virtue of the definition (21), (19) of the polynomials 𝑉𝑖,0 and Equation (16), the functions

𝑣0,0(𝜉) ≡𝜓0(0), 𝑣1,0(𝜉) = 𝜓′
0(0)𝜉, 𝑣𝑘,0(𝜉) =

𝜓
(𝑘)
0 (0)

𝑘!
𝜉𝑘, 𝑘 > 2, (26)

satisfy (24), (23).
Equations (17) for 𝜓±

𝑖,𝑖 have the form:

𝐻0𝜓
±
𝑖,𝑖 =𝜆0𝜓

±
𝑖,𝑖 + 𝜆𝑖,𝑖𝜓0 +

𝑖−1∑︁
𝑝=1

𝜆𝑝,𝑝𝜓
±
𝑖−𝑝,𝑖−𝑝, 𝑥 ∈ R±, 𝑖 > 1. (27)

Let us introduce the following conjugation condition for 𝜓±
𝑖,𝑖 at zero from the matched conditions (23).

Equations (25) and the equalities (21), (19) for 𝑣𝑖,𝑖 and 𝑉
±
𝑖,𝑖 have the form:

𝑑2𝑣𝑖,𝑖
𝑑𝜉2

=0, 𝑉 ±
𝑖,𝑖 (𝜉) ≡ 𝜓±

𝑖,𝑖(0), 𝑖 > 1. (28)

Let us introduce the following notation for the functions 𝑈− ∈ 𝐶∞[−𝛿, 0] and 𝑈+ ∈ 𝐶∞[0, 𝛿] :

[𝑈 ](0) := 𝑈+(0)− 𝑈−(0), [𝑈 ′](0) := (𝑈+)′(0)− (𝑈−)′(0).

It follows sequentially from (28) and the matching condition (23) for 𝑣𝑖,𝑖 that

[𝜓𝑖,𝑖](0) =0, 𝑖 > 1, (29)

𝑣𝑖,𝑖(𝜉) =𝑉
±
𝑖,𝑖 (𝜉) ≡ 𝜓+

𝑖,𝑖(0) = 𝜓−
𝑖,𝑖(0) := 𝜓𝑖,𝑖(0), 𝑖 > 1. (30)

Equations (25) and the equalities (21), (19) for 𝑣𝑖+1,𝑖 and 𝑉
±
𝑖+1,𝑖 have the form:

𝑑2𝑣𝑖+1,𝑖

𝑑𝜉2
=𝑉 (𝜉)𝑣𝑖−1,𝑖−1, 𝑖 > 1 (31)

𝑉 ±
𝑖+1,𝑖(𝜉) =

(︁
𝜓±
𝑖,𝑖

)︁′
(0)𝜉 + 𝜓±

𝑖+1,𝑖(0), 𝑖 > 1. (32)

Invoking (26), we obtain that the functions

𝑣2,1(𝜉) =𝜓0(0)

𝜉∫︁
−∞

𝜏∫︁
−∞

𝑉 (𝑡)𝑑𝑡𝑑𝜏 + 𝑎2,1𝜉 + 𝑏2,1,

𝑣𝑗+1,𝑗(𝜉) =𝜓𝑗−1,𝑗−1(0)

𝜉∫︁
−∞

𝜏∫︁
−∞

𝑉 (𝑡)𝑑𝑡𝑑𝜏 + 𝑎𝑗+1,𝑗𝜉 + 𝑏𝑗+1,𝑗 , 𝑗 > 2,

(33)

are solutions of Equation (31) with any constants 𝑎𝑝+1,𝑝, 𝑏𝑝+1,𝑝. It follows from (33) that

𝑣𝑖+1,𝑖(𝜉) =𝑎𝑖+1,𝑖𝜉 + 𝑏𝑖+1,𝑖, 𝜉 → −∞, 𝑖 > 1,

𝑣2,1(𝜉) =𝜓0(0) (⟨𝑉 (𝑡)⟩ 𝜉 − ⟨𝑡𝑉 (𝑡)⟩) + 𝑎2,1𝜉 + 𝑏2,1, 𝜉 → +∞
𝑣𝑗+1,𝑗(𝜉) =𝜓𝑗−1,𝑗−1(0) (⟨𝑉 (𝑡)⟩ 𝜉 − ⟨𝑡𝑉 (𝑡)⟩)+

+ 𝑎𝑗+1,𝑗𝜉 + 𝑏𝑗+1,𝑗 , 𝜉 → +∞, 𝑗 > 2.

(34)

Comparing (32) and the right-hand sides (34), we conclude that the following statement holds.

Lemma 3. If the following conjugation conditions are satisfied at zero

[𝜓′
1,1](0) = 𝜓0(0) ⟨𝑉 (𝑡)⟩ , [𝜓′

𝑗,𝑗 ](0) = 𝜓𝑗−1,𝑗−1(0) ⟨𝑉 (𝑡)⟩ , 𝑗 > 2 (35)
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then, there exist constants 𝑎𝑖+1,𝑖 such that

𝑣2,1(𝜉)− 𝑉 +
2,1(𝜉) =𝑏2,1 − 𝜓+

2,1(0)− 𝜓0(0) ⟨𝑡𝑉 (𝑡)⟩ , 𝜉 → +∞,

𝑣2,1(𝜉)− 𝑉 −
2,1(𝜉) =𝑏2,1 − 𝜓−

2,1(0), 𝜉 → −∞,

𝑣𝑗+1,𝑗(𝜉)− 𝑉 +
𝑗+1,𝑗(𝜉) =𝑏𝑗+1,𝑗 − 𝜓+

𝑗+1,𝑗(0)− 𝜓+
𝑗−1,𝑗−1(0) ⟨𝑡𝑉 (𝑡)⟩ , 𝜉 → +∞,

𝑣𝑗+1,𝑗(𝜉)− 𝑉 −
𝑗+1,𝑗(𝜉) =𝑏𝑗+1,𝑗 − 𝜓−

𝑗+1,𝑗(0), 𝜉 → −∞, 𝑗 > 2.

(36)

Moreover, if
[𝜓2,1] (0) =− 𝜓0(0) ⟨𝑡𝑉 (𝑡)⟩ ,

[𝜓𝑗+1,𝑗 ](0) =− 𝜓𝑗−1,𝑗−1(0) ⟨𝑡𝑉 (𝑡)⟩ , 𝑗 > 2
(37)

then there exist also constants 𝑏𝑖+1,𝑖 such that

𝑣𝑖+1,𝑖(𝜉)− 𝑉 ±
𝑖+1,𝑖(𝜉) = 0, 𝜉 → ±∞,

i.e. (23) is satisfied for 𝑗 = 𝑖+ 1.

Similarly to [4], one can readily demonstrate that the following statement holds.

Lemma 4. Let 𝐹± ∈ 𝐿2(R±), 𝐹
+ ∈ 𝐶∞[0, 𝛿], 𝐹− ∈ 𝐶∞[−𝛿, 0] and
0∫︁

−∞

𝐹−𝜓0 𝑑𝑥+

∞∫︁
0

𝐹+𝜓0 𝑑𝑥 = 0.

Then for any numbers 𝛼, 𝛽 there are functions 𝑈± ∈ 𝑊 2
2,𝑙𝑜𝑐 (R±) ∩ 𝐿2(R±), 𝑈

+ ∈ 𝐶∞[0, 𝛿], 𝑈− ∈
𝐶∞[−𝛿, 0], that are solutions to the boundary-value problem

𝐻0𝑈
± = 𝜆0𝑈

± + 𝐹± + Λ𝜓0, 𝑥 ≷ 0, [𝑈 ](0) = 𝛽, [𝑈 ′](0) = 𝛼,

0∫︁
−∞

𝑈−𝜓0 𝑑𝑥+

∞∫︁
0

𝑈+𝜓0 𝑑𝑥 = 0

when

Λ = 𝛼𝜓0(0)− 𝛽𝜓′
0(0).

The lemma entails

Corollary 2. If 𝜓0(0) = 𝛽 = 0 then Λ = 0.

The lemma entails that when 𝜆1,1, defined by the equality (5),

𝜆𝑝,𝑝 = 𝜓0(0) < 𝑉 (𝑡) > ̃︀𝜆𝑝,𝑝, 𝑝 > 2, (38)

where ̃︀𝜆𝑝,𝑝 are some constants, there are functions of the form

𝜓±
𝑖,𝑖(𝑥) = 𝜓0(0) < 𝑉 (𝑡) > ̃︀𝜓±

𝑖,𝑖(𝑥), 𝑖 > 1, (39)

satisfying (27), (29), (35), (18). Finding 𝜓±
𝑖,𝑖(𝑥), we finally determine 𝑣𝑖,𝑖 in accordance with (30),

achieve the matching condition (23) for 𝑣𝑖,𝑖, and by virtue of Lemma 3 find the functions 𝑣𝑖+1,𝑖 with
the accuracy up to arbitrary addends 𝑏𝑖+1,𝑖, obtaining the equality (36) for 𝑣𝑖+1,𝑖.

In particular, it follows from (5), (38), (39), (30) that

if 𝜓0(0) ⟨𝑉 (𝑡)⟩ = 0 then 𝜓±
𝑖,𝑖(𝑥) = 𝑣𝑖,𝑖(𝜉) ≡ 𝜆𝑖,𝑖 = 0, 𝑖 > 1. (40)

Let us turn to the following steps in construction of asymptotics. Let us denotẽ︀𝑉 ±
𝑖,𝑗(𝜉) := 𝑉 ±

𝑖,𝑗(𝜉)− (𝜓±
𝑖−1,𝑗)

′(0)𝜉 − 𝜓±
𝑖,𝑗(0), 1 6 𝑗 6 𝑖− 1. (41)

By virtue of Equation (17) and Definitions (21), (19), (41) of the polynomials 𝑉 ±
𝑖,𝑗 ,

̃︀𝑉 ±
𝑖,𝑗 , we achieve the

validity of the following statement.
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Lemma 5. The polynomials ̃︀𝑉 ±
𝑖,𝑗(𝜉) can depend only on 𝜆𝑝,𝑞 and 𝜓±

𝑝,𝑞(𝑥) when 𝑝 6 𝑗 − 1, 𝑞 6 𝑗 and
satisfy the equalities (︁̃︀𝑉 ±

𝑖,𝑗

)︁′
(0) = ̃︀𝑉 ±

𝑖,𝑗(0) = 0,

𝑑2 ̃︀𝑉 ±
𝑖,𝑗

𝑑𝜉2
=

𝑖−2∑︁
𝑡=0

𝑊 (𝑖−𝑡−2)(0)

(𝑖− 𝑡− 2)!
𝜉𝑖−𝑡−2𝑉 ±

𝑡,𝑗 − 𝜆0𝑉
±
𝑖−2,𝑗+

+

𝑖−1∑︁
𝑝=1

𝑗−1∑︁
𝑞=1

𝜆𝑝,𝑞𝑉
±
𝑖−𝑝−2,𝑗−𝑞, 𝜉 ∈ R±, 1 6 𝑗 6 𝑖− 1.

The validity of the following statement is demonstrated in [4].

Lemma 6. Let the function 𝑓 ∈ 𝐶∞(R) coincide with the polynomials 𝑓±(𝜉) when 𝜉 → ±∞, and
the following equalities hold for the polynomials ̃︀𝑣±(𝜉) :

𝑑2̃︀𝑣±
𝑑𝜉2

= 𝑓±, (̃︀𝑣±)′(0) = ̃︀𝑣±(0) = 0.

Then, for the general solution of the equation

𝑑2𝑣

𝑑𝜉2
= 𝑓

the equalities
𝑣(𝜉) =̃︀𝑣−(𝜉) + 𝑎𝜉 + 𝑏, 𝜉 → −∞,

𝑣(𝜉) =̃︀𝑣+(𝜉) +𝐴𝜉 +𝐵 + 𝑎𝜉 + 𝑏, 𝜉 → +∞,

hold, where 𝐴, 𝐵 are some constants, depending on 𝑓 , and 𝑎, 𝑏 are arbitrary constants.

At the following step by virtue of Lemmas 5, 6, we find the solutions 𝑣𝑞+2,𝑞 of Equations (25) such
that

𝑣𝑞+2,𝑞(𝜉)− 𝑉 +
𝑞+2,𝑞(𝜉) =

(︂
𝐴𝑞+2,𝑞 + 𝑎𝑞+2,𝑞 −

(︁
𝜓+
𝑞+1,𝑞

)︁′
(0)

)︂
𝜉+

+𝐵𝑞+2,𝑞 + 𝑏𝑞+2,𝑞 − 𝜓+
𝑞+2,𝑞(0), 𝜉 → +∞,

𝑣𝑞+2,𝑞(𝜉)− 𝑉 −
𝑞+2,𝑞(𝜉) =

(︂
𝑎𝑞+2,𝑞 −

(︁
𝜓−
𝑞+1,𝑞

)︁′
(0)

)︂
𝜉+

+ 𝑏𝑞+2,𝑞 − 𝜓−
𝑞+2,𝑞(0), 𝜉 → −∞, 𝑞 > 1,

(42)

where 𝐴𝑞+2,𝑞, 𝐵𝑞+2,𝑞 are completely determined constants independent of 𝐴𝑝+2,𝑝, 𝐵𝑝+2,𝑝 when 𝑝 > 𝑞,
and 𝑎𝑞+2,𝑞, 𝑏𝑞+2,𝑞 are arbitrary constants. In addition to the conjugation conditions (37), let us also
impose the conjugation conditions

[𝜓′
𝑞+1,𝑞](0) = 𝐴𝑞+2,𝑞, 𝑞 > 1. (43)

By virtue of Lemma 4, there are constants 𝜆𝑞+1,𝑞 and functions 𝜓±
𝑞+1,𝑞(𝑥) satisfying (17), (18) when

𝑖 = 𝑞 + 1, 𝑗 = 𝑞 and the conjugation conditions (37), (43). Upon determining 𝜓±
𝑞+1,𝑞(𝑥), we find

sequentially 𝑏𝑞+1,𝑞, 𝑎𝑞+1,𝑞, define the functions 𝑣𝑞+1,𝑞(𝜉) completely, achieving the equality of the
functions 𝑣𝑞+1,𝑞(𝜉) = 𝑉 ±

𝑞+1,𝑞(𝜉) when 𝜉 → ±∞, and the functions 𝑣𝑞+2,𝑞(𝜉) with the accuracy to
arbitrary addends 𝑏𝑞+2,𝑞, obtaining the equalities

𝑣𝑞+2,𝑞(𝜉)− 𝑉 +
𝑞+2,𝑞(𝜉) =𝐵𝑞+2,𝑞 + 𝑏𝑞+2,𝑞 − 𝜓+

𝑞+2,𝑞(0), 𝜉 → +∞,

𝑣𝑞+2,𝑞(𝜉)− 𝑉 −
𝑞+2,𝑞(𝜉) =𝑏𝑞+2,𝑞 − 𝜓−

𝑞+2,𝑞(0), 𝜉 → −∞, 𝑞 > 1

(an analogue of the equalities (36) at the previous step), etc.
As a result we conclude that the following lemma holds.

Lemma 7. There are series (4), (15), (22) such that the equalities (17), (24), (25), (23) hold,
where the polynomials 𝑉𝑖,0(𝜉) and 𝑉

±
𝑖,𝑗(𝜉) are defined by the equalities (21), (19).

The equalities (5), (26), (40) hold for coefficients of these series.
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Note that the equalities (7) are contained in (40) under the condition (6).
Let us demonstrate that the equality (9) holds under the condition (8). By virtue of Lemma 4 we

have:

𝜆2,1 = [𝜓′
2,1](0)𝜓0(0)− [𝜓2,1](0)𝜓

′
0(0). (44)

The value [𝜓2,1](0) is defined in (37), and the equality (43) has the form

[𝜓′
2,1](0) = 𝐴3,1 (45)

when 𝑞 = 1. While,

𝑣3,1(𝜉) = (𝐴3,1 + 𝑎3,1) 𝜉 +𝐵3,1 + 𝑏3,1, 𝜉 → +∞,

𝑣3,1(𝜉) =𝑎3,1𝜉 + 𝑏3,1, 𝜉 → −∞
(46)

according to (42), and 𝑣3,1 is the solution of Equation (25) when 𝑖 = 3, 𝑗 = 1. Since 𝑣1,1(𝜉) ≡ 0,
𝑣1,0(𝜉) = 𝜓′

0(0)𝜉 by virtue of (40) and (26), respectively then Equation (25) for 𝑣3,1 has the form

𝑑2𝑣3,1
𝑑𝜉2

=𝜓′
0(0)𝑉 (𝜉)𝜉. (47)

Hence,

𝑣3,1(𝜉) =𝜓
′
0(0)

𝜉∫︁
−∞

𝜏∫︁
−∞

𝑡𝑉 (𝑡)𝑑𝑡𝑑𝜏 + 𝑎3,1𝜉 + 𝑏3,1, (48)

and 𝐴3,1 = 𝜓′
0(0) ⟨𝑡𝑉 (𝑡)⟩. This equality together with (37), (45), (44) entail the equality (9) under the

condition (8).
Let us demonstrate that the equalities (11) hold under the condition (10). Since 𝑣𝑗,𝑗 ≡ 0 when 𝑗 > 0

by virtue of (40) and the equality 𝑣0,0(𝜉) ≡ 𝜓0(0) = 0 then, invoking Equations (31) and Corollary 2,
one obtains that the validity of the equalities follows from the chain:

𝑣𝑗,𝑗 ≡ 0, 𝑗 > 0 ⇒ 𝑑2

𝑑𝜉2
𝑣𝑖+1,𝑖 ≡ 0, 𝑖 > 1 ⇒ 𝑣𝑖+1,𝑖(𝜉) = 𝑎𝑖+1,𝑖𝜉 + 𝑏𝑖+1,𝑖

⇒ [𝜓𝑖+1,𝑖](0) = 0 ⇒ 𝜆𝑖+1,𝑖 = 0.

It remains only to demonstrate the validity of the equality (12) under the condition (10). By virtue
of Lemma 4 we have:

𝜆3,1 = −[𝜓3,1](0)𝜓
′
0(0). (49)

Since 𝑣1,1(𝜉) = 0, and 𝑣1,0(𝜉) = 𝜓′
0(0)𝜉 by virtue of (26) then Equation (25) for 𝑣3,1 has the from (47)

again. Hence, we obtain the equalities (48) and (46), where 𝐵3,1 = −𝜓′
0(0)

⟨︀
𝑡2𝑉

⟩︀
. Since [𝜓3,1](0) =

𝐵3,1, the equality (12) follows from (49).

5. Justification of asymptotics

Let us assume that 𝜒(𝑥) ∈ 𝐶∞
0 (R) is a patch functions vanishing when |𝑥| < 1 and equal to one

when |𝑥| > 2, ̂︀𝜆𝑁 (𝜀, 𝜇), ̂︀𝜓±
𝑁 (𝑥, 𝜀, 𝜇) and ̂︀𝑣𝑁 (𝜉, 𝜀, 𝜇) are partial sums in 𝜀 up to the order 𝑁 including

the series (4), (15) and (22), respectively. Let us introduce the notation

Ψ𝑁 (𝑥, 𝜀, 𝜇) :=𝜒
(︁
𝑥𝜀−

1
2

)︁(︁ ̂︀𝜓+
𝑁 (𝑥, 𝜀, 𝜇) + ̂︀𝜓−

𝑁 (𝑥, 𝜀, 𝜇)
)︁
+

+
(︁
1− 𝜒

(︁
𝑥𝜀−

1
2

)︁)︁ ̂︀𝑣𝑁 (︀𝑥𝜀−1, 𝜀, 𝜇
)︀
.

The definition of Ψ𝑁 entails that the function belongs to the definition domain of the operator ℋ𝜇,𝜀

(coinciding with the definition domain of the operator ℋ0) and

‖Ψ𝑁‖𝐿2(R) → 1, 𝜀→ 0. (50)

The following lemma is proved on the basis of statements of Lemma 7.



PERTURBATION OF THE SHRÖDINGER OPERATOR. . . 63

Lemma 8. The equality

ℋ𝜇,𝜀Ψ𝑁 = ̂︀𝜆𝑁Ψ𝑁 + 𝐹𝑁 (51)

holds and

‖𝐹𝑁‖𝐿2(R) = 𝑂
(︁
𝜀

𝑁
2
−1 + 𝜀𝛾𝑁−1

)︁
(52)

in it.

Proof. It follows from the definitions of Ψ𝑁 and ℋ𝜇,𝜀 that

𝐹𝑁 = 𝐹1,𝑁 + 𝐹2,𝑁 + 𝐹3,𝑁 , (53)

where

𝐹1,𝑁 (𝑥, 𝜀, 𝜇) =𝜒
(︁
𝑥𝜀−

1
2

)︁(︁
𝐻0 − ̂︀𝜆𝑁)︁(︁ ̂︀𝜓+

𝑁 (𝑥, 𝜀, 𝜇) + ̂︀𝜓−
𝑁 (𝑥, 𝜀, 𝜇)

)︁
,

𝐹2,𝑁 (𝑥, 𝜀, 𝜇) =
(︁
1− 𝜒

(︁
𝑥𝜀−

1
2

)︁)︁(︁
𝐻𝜇,𝜀 − ̂︀𝜆𝑁)︁ ̂︀𝑣𝑁 (︀𝑥𝜀−1, 𝜀, 𝜇

)︀
,

𝐹3,𝑁 (𝑥, 𝜀, 𝜇) =−
(︁ ̂︀𝜓+

𝑁 (𝑥, 𝜀, 𝜇) + ̂︀𝜓−
𝑁 (𝑥, 𝜀, 𝜇)− ̂︀𝑣𝑁 (︀𝑥𝜀−1, 𝜀, 𝜇

)︀)︁ 𝑑2

𝑑𝑥2
𝜒
(︁
𝑥𝜀−

1
2

)︁
−

− 2
𝑑

𝑑𝑥

(︁ ̂︀𝜓+
𝑁 (𝑥, 𝜀, 𝜇) + ̂︀𝜓−

𝑁 (𝑥, 𝜀, 𝜇)− ̂︀𝑣𝑁 (︀𝑥𝜀−1, 𝜀, 𝜇
)︀)︁ 𝑑

𝑑𝑥
𝜒
(︁
𝑥𝜀−

1
2

)︁
.

It follows from the definition of 𝐹1,𝑁 and the equalities (17) that

‖𝐹1,𝑁‖𝐿2(R) = 𝑂
(︀
𝜀𝑁+1𝜇−𝑁−1

)︀
. (54)

Since the support of the function 𝐹2,𝑁 belongs to the interval [−2𝜀
1
2 , 2𝜀

1
2 ], 𝑣𝑖,𝑗(𝜉) = 𝑂(𝜉𝑖−𝑗) when

𝜉 → ±∞ (see (23), (21), (19)) then, by virtue of the equalities (24), (25), we obtain the following
estimate:

‖𝐹2,𝑁‖𝐿2(R) = 𝑂

(︃
𝜀

𝑁
2
− 3

4

(︂
𝜀

1
2 +

𝜀

𝜇

)︂
+ 𝜀

1
4

(︂
𝜀

𝜇

)︂𝑁−1
(︃
1 +

𝜀
1
4

𝜇

)︃)︃
. (55)

The definitions (21), (19) of the polynomials 𝑉 ±
𝑖,𝑗 and the equalities (23) also entail that when

𝑥 ∈ [−2𝜀
1
2 ,−𝜀

1
2 ] ∪ [𝜀

1
2 , 2𝜀

1
2 ], the differentiable equalitŷ︀𝜓+

𝑁 (𝑥, 𝜀, 𝜇) + ̂︀𝜓−
𝑁 (𝑥, 𝜀, 𝜇)− ̂︀𝑣𝑁 (︀𝑥𝜀−1, 𝜀, 𝜇

)︀
=

= 𝑂

(︃
𝑥𝑁+1 +

(︂
𝜀

𝜇

)︂𝑁

𝑥

)︃
(56)

holds. Since the support of the function 𝐹3,𝑁 belongs to [−2𝜀
1
2 ,−𝜀

1
2 ] ∪ [𝜀

1
2 , 2𝜀

1
2 ] and

𝑑

𝑑𝑥
𝜒
(︁
𝑥𝜀−

1
2

)︁
= 𝑂(𝜀−

1
2 ),

𝑑2

𝑑𝑥2
𝜒
(︁
𝑥𝜀−

1
2

)︁
= 𝑂(𝜀−1),

then (56) provides the estimate

‖𝐹3,𝑁‖𝐿2(R) = 𝑂

(︃
𝜀−

1
4

(︂
𝜀

1
2 +

𝜀

𝜇

)︂𝑁
)︃
. (57)

The estimate (52) follows from (53), (54), (55), (57) and (3).
By virtue of the resolvent estimate for linear selfadjoint operators (see, e.g., [1, Chapter V, S 3]) we

have:

‖Ψ𝑁‖𝐿2(R) 6
‖𝐹𝑁‖𝐿2(R)⃒⃒⃒
𝜆𝜇,𝜀 − ̂︀𝜆𝑁 ⃒⃒⃒ .

for solution of Equation (51). This estimate, Lemma 8 and (50) provide the equality⃒⃒⃒
𝜆𝜇,𝜀 − ̂︀𝜆𝑁 ⃒⃒⃒ = 𝑂

(︁
𝜀

𝑁
2
−1 + 𝜀𝛾𝑁−1

)︁
.

Whence, due to the arbitrary choice of 𝑁, we obtain that the constructed series (4) is a complete
asymptotic expansion of the eigenvalue 𝜆𝜇,𝜀.
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This completes the proof of Theorem 2.
In conclusion, the authors would like to thank D.I. Borisov for useful comments.
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