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BOUNDARY VALUE PROBLEMS FOR THE LOADED THIRD

ORDER EQUATIONS OF THE HYPERBOLIC AND MIXED

TYPES

U.I. BALTAYEVA, B.I. ISLOMOV

Abstract. In this paper, the unique solvability is proved for the solution of boundary
value problems of a loaded third order differential equation with hyperbolic and parabolic-
hyperbolic operators. The boundary value problems for loaded differential equations are
reduced to the Volterra integral equation of the second kind. On this basis, existence and
uniqueness of the solution of boundary value problems is proved by the method of integral
equations.

Keywords:loaded equation, equations of the mixed type, integral equation, integral equa-
tion with a shift, Bessel’s functions.

1. Introduction

In the recent years, in connection with intensive research on problems of optimal control,
long-term forecasting and regulating the level of ground waters and soil moisture, it has become
necessary to investigate a new class of equations called ”‘loaded equations”’. Such equations
were investigated for the first time in works of N.N. Nazarov and N.N. Kochin. However, they
did not use the term ”loaded equation”. For the first time, the term has been used in works of
A.M. Nakhushev, where the most general definition of a loaded equation is given and various
loaded equations are classified in detail, e.g., loaded differential, integral, integro-differential,
functional equations etc., and numerous applications are described.

Works of A.M. Nakhushev, M.Kh. Shkhankov, A.B. Borodin, V.M. Kaziev, A.Kh. Attaev,
C.C. Pomraning, E.W. Larsen, V.A. Eleev, M.T. Dzhenaliev, B. Islomov and D.M. Kuriazov,
D.M. Kuriazov, K.U. Khubiev, M.I. Ramazanov et al. are devoted to loaded second-order
partial differential equations.

It should be noted that boundary-value problems for loaded equations of a hyperbolic,
parabolic-hyperbolic, elliptic-hyperbolic types of the third order are less well understood. We
indicate only the works of V.A. Elkeev, B. Islomov and D.M. Kur’yazov, V.A. Eleev and
A.V. Dzarakhokhov.

The present paper is devoted to formulation and investigation of the analogue of the Cauchy-
Goursat problem for the loaded equation of a hyperbolic type

𝜕

𝜕𝑥
(𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝜆𝑢) − 𝜇𝑢(𝑥, 0) = 0, (1)

and a boundary-value problem for a loaded equation of a mixed parabolic hyperbolic type

𝜕

𝜕𝑥
(𝐿𝑢) − 𝜇𝑢(𝑥, 0) = 0, (2)

where
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𝐿𝑢 =

{︂
𝐿1𝑢 ≡ 𝑢𝑥𝑥 − 𝑢𝑦 − 𝜆𝑢, 𝑦 > 0,
𝐿2𝑢 ≡ 𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝜆𝑢, 𝑦 < 0,

𝜆, 𝜇 are real constants, and 𝜆 > 0.

2. Analogue of the Cauchy-Goursat problem for a loaded equation of the
hyperbolic type

Let 𝐷 be a domain bounded by the characteristics

𝐴𝐶 : 𝑥+ 𝑦 = 0, 𝐵𝐶 : 𝑥− 𝑦 = 1

of Equations (1) and the segment 𝐴𝐵 of the axis 𝑦 = 0.
Let us consider the following analogue of the Cauchy-Goursat problem for the loaded equation

(1) in the domain 𝐷.
Problem A. Find a solution 𝑢(𝑥, 𝑦) to Equation (1), which is regular in the domain 𝐷, con-

tinuous in 𝐷̄, and has continuous derivatives 𝑢𝑥, 𝑢𝑦 up to 𝐴𝐵∪𝐴𝐶, and satisfies the boundary-
value conditions

𝑢𝑦(𝑥, 𝑦)|𝐴𝐵 = 𝜈(𝑥), 0 ≤ 𝑥 < 1, (3)

𝑢(𝑥, 𝑦)|𝐴𝐶 = 𝜓1(𝑥),
𝜕𝑢(𝑥, 𝑦)

𝜕𝑛

⃒⃒⃒⃒
𝐴𝐶

= 𝜓2(𝑥), 0 ≤ 𝑥 ≤ 1

2
, (4)

where 𝑛 is an inner normal, 𝜈(𝑥), 𝜓1(𝑥), 𝜓2(𝑥) are given functions,
and 2𝜈(𝑥) =

√
2𝜓2(0) − 𝜓

′
1(0),

𝜈(𝑥) ∈ 𝐶[0, 1] ∩ 𝐶2(0, 1), (5)

𝜓1(𝑥) ∈ 𝐶1

[︂
0,

1

2

]︂
∩ 𝐶3

(︂
0,

1

2

)︂
, 𝜓2(𝑥) ∈ 𝐶

[︂
0,

1

2

]︂
∩ 𝐶2

(︂
0,

1

2

)︂
. (6)

Theorem 1. If Conditions (5), (6) are satisfied, then there is a unique solution to Problem
𝐴 in the domain 𝐷.

Proof of Theorem 1.
A n important part in proving Theorem 1 is played by the following lemma.
Lemma 1. Any regular solution to Equation (1) is represented in the form

𝑢(𝑥, 𝑦) = 𝑧 (𝑥, 𝑦) + 𝑤(𝑥), (7)

where 𝑧(𝑥, 𝑦) is solution of the equation

𝜕

𝜕𝑥
(𝑧𝑥𝑥 − 𝑧𝑦𝑦 − 𝜆𝑧) = 0, (8)

and 𝑤(𝑥) is the solution of the following ordinary differential equation

𝑤
′ ′ ′

(𝑥) − 𝜆𝑤
′
(𝑥) − 𝜇𝑤(𝑥) = 𝜆𝑧(𝑥, 0). (9)
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Proof of Lemma 1
Let 𝑢(𝑥, 𝑦), represented by Formula (7), be the solution of Equation (1). Then, substituting

(7) into (1), we have

𝜕

𝜕𝑥
(𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝜆𝑢) − 𝜇𝑢(𝑥, 0) =

𝜕

𝜕𝑥
(𝑧𝑥𝑥 − 𝑧𝑦𝑦 − 𝜆𝑧) +

+𝑤′′′(𝑥) − 𝜆𝑤′(𝑥) − 𝜇𝑤(𝑥) − 𝜇 𝑧(𝑥, 0) = 0,

i.e., it satisfies Equation (1).
Then, vice versa, let 𝑢(𝑥, 𝑦) be a regular solution to Equation (1), and 𝑤(𝑥) be a certain

solution

𝑤′′′(𝑥) − 𝜆𝑤′(𝑥) = 𝜇𝑢(𝑥, 0). (10)

Let us prove the validity of the relation (7). Manifestly, the function

𝑢(𝑥, 𝑦) = 𝑧(𝑥, 𝑦) +
𝜇

𝜆

𝑥∫︁
0

(𝑐ℎ
√
𝜆(𝑥− 𝑡) − 1)𝑢(𝑡, 0)𝑑𝑡

is a solution to Equation (1), where 𝑧(𝑥, 𝑦) − is a solution to Equation (8), and the function

𝑢(𝑥, 𝑦) =
𝜇

𝜆

𝑥∫︁
0

(𝑐ℎ
√
𝜆(𝑥− 𝑡) − 1)𝑢(𝑡, 0)𝑑𝑡

is a partial solution to Equation (1). Hence, (1) entails the validity of the representation (7),
i.e. 𝑢(𝑥, 𝑦) = 𝑧(𝑥, 𝑦) + 𝑤(𝑥).

It follows from the latter representation that 𝑢(𝑥, 0) = 𝑧(𝑥, 0) + 𝑤(𝑥). Then, (10) provides

𝑤′′′(𝑥) − 𝜆𝑤′(𝑥) − 𝜇𝑤(𝑥) − 𝜇 𝑧(𝑥, 0) = 0,

and the function 𝑧(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) − 𝑤(𝑥) satisfies Equation (8).
Lemma 1 is proved.

Invoking that the function 𝑎 cos
√
𝜆𝑥 + 𝑏 sin

√
𝜆𝑥 + 𝑐 𝑒

√
𝜆𝑥 satisfies Equation (8), we can

assume without loss of generality that

𝑤(0) = 𝑤′(0) = 𝑤′′(0) = 0 (11)

when studying Problem 𝐴.
Let us solve the Cauchy problem for Equation (9) with the conditions (11) with respect to

𝑤(𝑥).
The characteristic equation, corresponding to the homogeneous equation (9), has the form

𝑘3 − 𝜆𝑘 − 𝜇 = 0. (12)

Let us introduce the notation ∆ = 𝜇2

4
− 𝜆3

27
.

1) If ∆ > 0 then, it is known [3] that equation (12) has one real and two complex conjugate
roots in the form

𝑘1 = 𝑢1 + 𝑣1, 𝑘2,3 = −1

2
(𝑢1 + 𝑣1) ±

√
3

2
𝑖(𝑢1 − 𝑣1),

where

𝑢1 = 3

√︂
𝜇

2
+
√

∆, 𝑣1 = 3

√︂
𝜇

2
−
√

∆.
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Thus, the solution of the Cauchy problem for Equation (9) with the conditions (11) for ∆ > 0
has the form

𝑤(𝑥) =

𝑥∫︁
0

𝑇1(𝑥, 𝑡)𝑧(𝑡, 0)𝑑𝑡, (13)

where

𝑇1(𝑥, 𝑡) =
𝜇

3 (𝑢21 + 𝑢1𝑣1 + 𝑣21)

{︃
𝑒

3
2
(𝑢1+𝑣1) (𝑥−𝑡) +

√
3 (𝑢1 + 𝑣1)

𝑢1 − 𝑣1
sin

√
3

2
(𝑢1 − 𝑣1) (𝑡− 𝑥)−

− cos

√
3

2
(𝑢1 − 𝑣1) (𝑡− 𝑥)

}︃
𝑒−

1
2
(𝑢1+𝑣1) (𝑥−𝑡);

2) If ∆ = 0, Equation (12) has three real roots, two of them being equal to

𝑘1 =
3𝜇

𝜆
, 𝑘2 = 𝑘3 = −3𝜇

2𝜆
.

Solution to the Cauchy problem for Equation (9) with the conditions (11) for 𝜆 = −3 (𝜇/2)
2
3

has the form

𝑤(𝑥) =

𝑥∫︁
0

𝑇2(𝑥, 𝑡)𝑧(𝑡, 0)𝑑𝑡, (14)

where

𝑇2(𝑥, 𝑡) =
2

9

(︁𝜇
2

)︁ 1
3
𝑒

3
√

𝜇
2
(𝑥−𝑡)

(︂
𝑒

3
√

𝜇
2
(𝑥−𝑡) − 3

(︁𝜇
2

)︁ 1
3

(𝑥− 𝑡) − 1

)︂
.

3) If ∆ < 0, Equation (12) has three various real roots, in the form [3]

𝑘1 = 2
⃒⃒

3
√
𝑟
⃒⃒
cos

𝜙

3
, 𝑘2 = 2

⃒⃒
3
√
𝑟
⃒⃒
cos

𝜙+ 2𝜋

3
, 𝑘3 = 2

⃒⃒
3
√
𝑟
⃒⃒
cos

𝜙+ 4𝜋

3
,

where

𝑟 =

⃒⃒⃒⃒
⃒
(︂
𝜆

3

)︂ 3
2

⃒⃒⃒⃒
⃒, cos𝜙 =

𝜇

2

⃒⃒⃒⃒
⃒
(︂
𝜆

3

)︂ 3
2

⃒⃒⃒⃒
⃒
−1

.

Correspondingly, the solution of the Cauchy problem for equation (9) with the conditions
(11) for ∆ < 0 has the form

𝑤(𝑥) =

𝑥∫︁
0

𝑇3(𝑥, 𝑡)𝑧(𝑡, 0)𝑑𝑡, (15)

where

𝑇3(𝑥, 𝑡) =
𝜇

(𝑘2 − 𝑘1) (𝑘3 − 𝑘1) (𝑘2 − 𝑘3)

{︀
(𝑘2 − 𝑘3) 𝑒

𝑘1(𝑥−𝑡)+

+ (𝑘3 − 𝑘1) 𝑒
𝑘2(𝑥−𝑡) − (𝑘2 − 𝑘1) 𝑒

𝑘3(𝑥−𝑡)
}︀
.

By virtue of the representation (7), Problem A is reduced to Problem A* of finding a solution
𝑧(𝑥, 𝑦) of Equation (8), which is regular in the domain 𝐷 and satisfies the conditions
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𝑧𝑦(𝑥, 𝑦)|𝐴𝐵 = 𝜈(𝑥), 0 < 𝑥 < 1, (16)

𝑧(𝑥, 𝑦)|𝐴𝐶 = 𝜓1(𝑥) − 𝑤(𝑥),
𝜕𝑧(𝑥, 𝑦)

𝜕𝑛

⃒⃒⃒⃒
𝐴𝐶

= 𝜓2(𝑥) − 1√
2
𝑤′(𝑥), 0 ≤ 𝑥 ≤ 1

2
, (17)

where

𝑤(𝑥) =

𝑥∫︁
0

𝑇𝑖(𝑥, 𝑡)𝑧(𝑡, 0)𝑑𝑡 , (𝑖 = 1, 3). (18)

Similarly to [4] and [5], we can write out the solution to Equation (8) in 𝐷 with the conditions
(16), (17) by means of the general representation in view of (5), (6) and [6]:

𝑧(𝑥, 𝑦) =

𝑥+𝑦∫︁
0

𝜈(𝑡)𝐼0

[︁√︀
𝜆(𝑥+ 𝑦 − 𝑡)(𝑥− 𝑦 − 𝑡)

]︁
𝑑𝑡− 𝜓*

1(0)𝐼0

[︁√︀
𝜆 (𝑥2 − 𝑦2)

]︁
+

+𝜓*
1

(︂
𝑥+ 𝑦

2

)︂
+ 𝜓*

1

(︂
𝑥− 𝑦

2

)︂
+

1√
𝜆

𝑥+𝑦∫︁
0

(︁
𝜆𝜓*

1(𝑡) −
√

2𝜓* ′

2 (𝑡)
)︁

sin
√
𝜆

(︂
𝑡− 𝑥+ 𝑦

2

)︂
𝑑𝑡+

+
1√
𝜆

𝑥−𝑦
2∫︁

0

(︁
𝜆𝜓*

1(𝑡) −
√

2𝜓* ′

2 (𝑡)
)︁

sin
√
𝜆

(︂
𝑡− 𝑥− 𝑦

2

)︂
𝑑𝑡− 2

𝑥−𝑦
2∫︁

0

𝜓*
1(𝑡)× (19)

×𝐵𝑡 (0, 2𝑡;𝑥+ 𝑦, 𝑥− 𝑦) 𝑑𝑡+
1√
𝜆

𝑦∫︁
0

(︁
𝜆𝜓*

1(−𝑡) −
√

2𝜓* ′

2 (−𝑡)
)︁

sin
√
𝜆(𝑦 − 𝑡)𝑑𝑡−

− 2√
𝜆

𝑥−𝑦
2∫︁

0

𝐵𝑡 (0, 2𝑡;𝑥+ 𝑦, 𝑥− 𝑦) 𝑑𝑡

𝑡∫︁
0

(︁
𝜆𝜓*

1(𝑧) −
√

2𝜓* ′

2 (𝑧)
)︁

sin
√
𝜆 (−𝑡+ 𝑧) 𝑑𝑧,

where

𝜓*
1(𝑥) = 𝜓1(𝑥) − 𝑤(𝑥), 𝜓*

2(𝑥) = 𝜓2(𝑥) − 1√
2
𝑤′(𝑥),

𝐵(𝑡, 𝑧;𝑥+𝑦, 𝑥−𝑦) is the Riemann-Hadamard function [6], 𝐼0[𝑧] is the modified Bessel function
[7].

Assuming that 𝑦 = 0 in (19) and invoking (18), we obtain the following functional correlation,
transferred from the domain 𝐷 onto 𝐴𝐵:

𝜏(𝑥) +

𝑥∫︁
0

𝐾(𝑥, 𝑡)𝜏

(︂
𝑡

2

)︂
𝑑𝑡 = Φ(𝑥), 0 ≤ 𝑥 ≤ 1, (20)

where

𝜏(𝑥) = 𝑧(𝑥, 0),

𝐾(𝑥, 𝑡) = 𝑇𝑖

(︂
𝑥

2
,
𝑡

2

)︂
+
𝜆𝑥

2

𝑥∫︁
𝑡

𝑇𝑖

(︂
𝑠

2
,
𝑡

2

)︂
𝐼1

[︁√︀
𝜆𝑥(𝑥− 𝑠)

]︁
𝑑𝑠+
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+
1

2
√
𝜆

𝑥∫︁
𝑡

𝐾*
(︂
𝑥

2
,
𝑡

2

)︂(︂
𝜆𝑇𝑖

(︂
𝑠

2
,
𝑡

2

)︂
− 1

4
𝑇

′

𝑖

(︂
𝑠

2
,
𝑡

2

)︂)︂
𝑑𝑠 , (21)

Φ(𝑥) = 2𝜓1

(︁𝑥
2

)︁
− 𝜓1(0)𝐼0

[︁√
𝜆𝑥
]︁

+

𝑥∫︁
0

𝜈(𝑡)𝐼0

[︁√
𝜆(𝑥− 𝑡)

]︁
𝑑𝑡+

+𝜆𝑥

𝑥∫︁
0

𝐼1

[︁√︀
𝜆𝑥(𝑥− 𝑡)

]︁
𝜓1

(︂
𝑡

2

)︂
𝑑𝑡+ (22)

+
1√
𝜆

𝑥∫︁
0

𝐾*
(︂
𝑥

2
,
𝑡

2

)︂ (︃
𝜆𝜓1

(︂
𝑡

2

)︂
−

√
2

2
𝜓

′

2

(︂
𝑡

2

)︂)︃
𝑑𝑡,

𝐾*(𝑥, 𝑡) = sin
√
𝜆(𝑡− 𝑥) +

𝑥∫︁
𝑡

𝜆𝑥𝐼1

[︁√︀
𝜆𝑥(𝑥− 2𝑠)

]︁
sin

√
𝜆 (𝑡− 𝑠)𝑑𝑠,

𝐼1(𝑥) = 𝐼1(𝑥)/𝑥, 𝐼0(𝑥), 𝐼1(𝑥) are the modified Bessel functions [7].
Whence, we conclude that the integral equation (20) always has a solution, which is unique

[8].
Thus, it is proved that Problem A is uniquely solvable.
Theorem 1 is proved.

3. Investigation of Problem C for Equation (2)

3.1. Formulation of Problem C for Equation (2).
Let Ω1 be a domain bounded by the segments 𝐴𝐵,𝐵𝐵0, 𝐴𝐴0, 𝐴0𝐵0 of the straight lines

𝑦 = 0, 𝑥 = 1, 𝑥 = 0, 𝑦 = ℎ, respectively when 𝑦 > 0. Ω2 is a characteristic triangle bounded
by the segment 𝐴𝐵 of the axis 𝑂𝑋 and two characteristics

𝐴𝐶 : 𝑥+ 𝑦 = 0, 𝐵𝐶 : 𝑥− 𝑦 = 1

of Equation (2) for 𝑦 < 0.
Let us introduce the following notation:

𝐼 = {(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝑦 = 0}, Ω = Ω1 ∪ Ω2 ∪ 𝐼.
Let us term the function 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω̄)

⋂︀
𝐶1(Ω)

⋂︀
𝐶3,1(Ω1)

⋂︀
𝐶3,2(Ω2), satisfying Equation

(2) in Ω1 and Ω2, as a regular solution of Equation (2).
Problem C. Find the function 𝑢(𝑥, 𝑦), possessing the following properties:
1) 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω̄);
2) 𝑢𝑥(𝑢𝑦) is continuous up to 𝐴𝐴0 ∪ 𝐴𝐶 (𝐴𝐵 ∪ 𝐴𝐶);
3) 𝑢(𝑥, 𝑦) is a regular solution of Equation (2) in the domains Ω1 and Ω2;
4) the sewing conditions

𝑢𝑦(𝑥,−0) = 𝑢𝑦(𝑥,+0), (𝑥, 0) ∈ 𝐼

are satisfied on 𝐴𝐵;
5) 𝑢(𝑥, 𝑦) satisfies the boundary-value conditions

𝑢(𝑥, 𝑦)|𝐴𝐴0
= 𝜙1(𝑦), 𝑢(𝑥, 𝑦)|𝐵𝐵0

= 𝜙2(𝑦), 𝑢𝑥(𝑥, 𝑦)|𝐴𝐴0
= 𝜙3(𝑦), 0 ≤ 𝑦 ≤ ℎ, (23)
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𝑢(𝑥, 𝑦)|𝐴𝐶 = 𝜓1(𝑥),
𝜕𝑢(𝑥, 𝑦)

𝜕𝑛

⃒⃒⃒⃒
𝐴𝐶

= 𝜓2(𝑥), 0 ≤ 𝑥 ≤ 1

2
, (24)

where 𝑛 is the inner normal, 𝜙1(𝑦), 𝜙2(𝑦), 𝜙3(𝑦), 𝜓1(𝑥) and 𝜓2(𝑥) are given functions and

𝜙1(0) = 𝜓1(0), 𝜙𝑗(𝑦) ∈ 𝐶1[0, 1], (𝑗 = 1, 2), 𝜙3(𝑦) ∈ 𝐶[0, 1] ∩ 𝐶1(0, 1), (25)

𝜓1(𝑥) ∈ 𝐶1

[︂
0,

1

2

]︂
∩ 𝐶3

(︂
0,

1

2

)︂
, 𝜓2(𝑥) ∈ 𝐶

[︂
0,

1

2

]︂
∩ 𝐶2

(︂
0,

1

2

)︂
. (26)

Theorem 2. If 𝜆 > 0 and the conditions (25) and (26) are satisfied, then there exists a
unique solution to the problem C in the domain Ω.
Proof of Theorem 2.
The following theorem holds.
Lemma 2. Any regular solution of Equation (2) (when 𝑦 ̸= 0) is represented in the form

𝑢(𝑥, 𝑦) = 𝑧(𝑥, 𝑦) + 𝑤(𝑥), (27)

where 𝑧(𝑥, 𝑦) is a solution to the equation

0 =
𝜕

𝜕𝑥

{︂
𝑧𝑥𝑥 − 𝑧𝑦 − 𝜆𝑧, 𝑦 > 0,
𝑧𝑥𝑥 − 𝑧𝑦𝑦 − 𝜆𝑧, 𝑦 < 0,

(28)

𝑤(𝑥) is a solution of the following ordinary differential equation

𝑤
′ ′ ′

(𝑥) − 𝜆𝑤
′
(𝑥) − 𝜇𝑤(𝑥) = 𝜆𝑧(𝑥, 0). (29)

The lemma is proved similarly to Lemma 1.

Invoking that the function 𝑎𝑒
√
𝜆𝑥 + 𝑏𝑒−

√
𝜆𝑥 + 𝑐 satisfies Equation (28), we can subordinate

the function 𝑤(𝑥) to the conditions

𝑤(0) = 𝑤′(0) = 𝑤′′(0) = 0. (30)

Solution of the Cauchy problem for Equation (29) with the conditions (30) can be represented
correspondingly in the form (13), (14), (15) considering ∆ > 0,∆ = 0 and ∆ < 0, while

𝑇𝑖(𝑥, 𝑥) = 𝑇 ′
𝑖 (𝑥, 𝑥) = 0, 𝑇 ′′

𝑖 (𝑥, 𝑥) = 𝜇, (𝑖 = 1, 3).

By virtue of the representation (27), Equation (2) and the boundary-value conditions (23),
(24), in view of (30), are reduced to the form (28)

𝑧(𝑥, 𝑦)|𝐴𝐴0
= 𝜙1(𝑦), 𝑧(𝑥, 𝑦)|𝐵𝐵0

= 𝜙2(𝑦) − 𝑤(1),
𝜕𝑧(𝑥, 𝑦)

𝜕𝑥

⃒⃒⃒⃒
𝐴𝐴0

= 𝜙3(𝑦), 0 ≤ 𝑦 ≤ ℎ, (31)

𝑧(𝑥, 𝑦)|𝐴𝐶 = 𝜓1(𝑥) − 𝑤(𝑥), 0 ≤ 𝑥 ≤ 1

2
, (32)

𝜕𝑧(𝑥, 𝑦)

𝜕𝑛

⃒⃒⃒⃒
𝐴𝐶

= 𝜓2(𝑥) − 1√
2
𝑤′(𝑥), 0 ≤ 𝑥 ≤ 1

2
. (33)

3.2. Derivation of basic functional relations
As it is known from Problem A, solution to Equation (28) with the boundary-value conditions

(32), (33) and

𝜕𝑧(𝑥, 𝑦)

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

= 𝜈(𝑥), 0 < 𝑥 < 1 (34)
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is given by the formula (19).
Assuming that 𝑦 = 0 in (19), in view of (30), and

𝑧(𝑥, 0) = 𝜏(𝑥), 0 ≤ 𝑥 ≤ 1, (35)

we obtain the functional relation, transferred from the domain Ω2 onto AB:

𝜏(𝑥) +

𝑥∫︁
0

𝐾(𝑥, 𝑡)𝜏

(︂
𝑡

2

)︂
𝑑𝑡−

𝑥∫︁
0

𝐼0

[︁√
𝜆(𝑥− 𝑡)

]︁
𝜈(𝑡)𝑑𝑡 = 𝑓1(𝑥), (36)

where

𝑓1(𝑥) = 2𝜓1

(︁𝑥
2

)︁
− 𝜓1(0)𝐽0

[︁√
𝜆𝑥
]︁

+ 𝜆𝑥

𝑥∫︁
0

𝐼1

[︁√︀
𝜆𝑥(𝑥− 𝑡)

]︁
𝜓1

(︂
𝑡

2

)︂
𝑑𝑡+

+
1√
𝜆

𝑥∫︁
0

𝐾*
(︂
𝑥

2
,
𝑡

2

)︂(︂
𝜆𝜓1

(︂
𝑡

2

)︂
−
√

2𝜓
′

2

(︂
𝑡

2

)︂)︂
𝑑𝑡, (37)

where 𝐾(𝑥, 𝑡) can be represented in the form (21).
Denoting

𝑓1(𝑥) = 𝜏(𝑥) +

𝑥∫︁
0

𝐾(𝑥, 𝑡)𝜏

(︂
𝑡

2

)︂
𝑑𝑡− 𝑓1(𝑥), (38)

from (37), and using the inversion formula for such equations [9]:

𝜈(𝑥) = 𝐶0,
√
𝜆

𝑂𝑋

[︁
𝑓1(𝑥)

]︁
≡ 𝑓

′

1(𝑥) − 𝜆

𝑥∫︁
0

𝑓1(𝑡)𝐼1

[︁√
𝜆(𝑥− 𝑡)

]︁
𝑑𝑡,

in view of (26) and (38), we obtain 𝜈(𝑥) with respect to 𝜏(𝑥) in the form

𝜈(𝑥) = 𝜏 ′(𝑥) − 𝜆

𝑥∫︁
0

𝜏(𝑡)𝐼1

[︁√
𝜆(𝑥− 𝑡)

]︁
𝑑𝑡+

+

𝑥∫︁
0

𝜏

(︂
𝑡

2

)︂⎛⎝𝐾 ′(𝑥, 𝑡) − 𝜆

𝑥∫︁
𝑡

𝐾(𝑠, 𝑡)𝐼1

[︁√
𝜆(𝑥− 𝑠)

]︁
𝑑𝑠

⎞⎠ 𝑑𝑡− (39)

−𝑓 ′

1(𝑥) + 𝜆

𝑥∫︁
0

𝑓1(𝑡)𝐼1

[︁√
𝜆(𝑥− 𝑡)

]︁
𝑑𝑡.

Due to the property of Problem C and in view of (34), (35), we obtain [4]

𝜏 ′′(𝑥) − 𝜆𝜏(𝑥) = 𝑘 + 𝜈(𝑥) (40)

from Equation (28) in Ω1, tending 𝑦 → −0.
Here 𝑘 is an unknown constant to be defined.

The equality (40) is a second functional relation between 𝜏(𝑥) and 𝜈(𝑥), transferred from the
domain Ω1 to AB.

3.3. Existence of solution to Problem C
Solving Equation (40) with respect to 𝜏(𝑥) with the conditions
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𝜏(0) = 𝜙1(0), 𝜏 ′(0) = 𝜙3(0), (41)

we have

𝜏(𝑥) = 1√
𝜆

𝑥∫︀
0

𝑠ℎ
√
𝜆(𝑥− 𝑡)𝜈(𝑡)𝑑𝑡− 𝑘

𝜆
(1 − 𝑐ℎ

√
𝜆𝑥)+

+ 𝜙1(0)𝑐ℎ
√
𝜆𝑥+ 1√

𝜆
𝜙3(0)𝑠ℎ

√
𝜆𝑥.

(42)

Omitting the function 𝜈(𝑥) in (39) and (42), in view of the sewing condition, we obtain an
integral equation with a shift with respect to 𝜏(𝑥):

𝜏(𝑥) −
𝑥∫︀
0

𝐾1(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡−
𝑥∫︀
0

𝐾2(𝑥, 𝑡)𝜏
(︀
𝑡
2

)︀
𝑑𝑡 =

= − 𝑘
𝜆

(︁
1 − 𝑐ℎ

√
𝜆𝑥
)︁

+ Φ1(𝑥),
(43)

where

𝐾1(𝑥, 𝑡) = 𝑐ℎ
√
𝜆(𝑥− 𝑡) −

√
𝜆

𝑥∫︁
𝑡

𝑠ℎ
√
𝜆(𝑥− 𝑠)𝐼1

[︁√
𝜆(𝑠− 𝑡)

]︁
𝑑𝑠,

𝐾2(𝑥, 𝑡) = − 1√
𝜆

𝑥∫︁
𝑡

𝑠ℎ
√
𝜆(𝑥− 𝑠)

⎛⎝𝐾 ′(𝑠, 𝑡) − 𝜆

𝑥∫︁
𝑡

𝐾(𝑧, 𝑡)𝐼1

[︁√
𝜆(𝑠− 𝑧)

]︁
𝑑𝑧

⎞⎠ 𝑑𝑠,

Φ1(𝑥) = 𝜙1(0)𝑐ℎ
√
𝜆𝑥+

1√
𝜆
𝜙3(0)𝑠ℎ

√
𝜆𝑥−

𝑥∫︁
0

𝐾1(𝑥, 𝑡)𝑓1(𝑡)𝑑𝑡. (44)

Assuming that

𝛼(𝑥) = Φ1(𝑥) − 𝑘

𝜆

(︁
1 − 𝑐ℎ

√
𝜆𝑥
)︁

+

𝑥∫︁
0

𝐾2(𝑥, 𝑡)𝜏

(︂
𝑡

2

)︂
𝑑𝑡, (45)

we write Equation (43) in the form

𝜏(𝑥) −
𝑥∫︁

0

𝐾1(𝑥, 𝑡)𝜏(𝑡)𝑑𝑡 = 𝛼(𝑥), 0 ≤ 𝑥 ≤ 1. (46)

Hence, Equation (43) is an integral Volterra equation of the second kind, which is uncondi-
tionally and uniquely solvable in the class 𝐶(0 6 𝑥 6 1). Thus, solution of Equation (46) has
the from

𝜏(𝑥) = 𝛼(𝑥) +

𝑥∫︁
0

𝑅1(𝑥, 𝑡)𝛼(𝑡)𝑑𝑡, (47)

where 𝑅1(𝑥, 𝑡) is the resolvent of the kernel 𝐾1(𝑥, 𝑡).
In view of (45) and the Dirichlet formula, Equation (47) has the from

𝜏(𝑥) −
𝑥∫︁

0

𝐾*
2(𝑥, 𝑡)𝜏

(︂
𝑡

2

)︂
𝑑𝑡 = Φ2(𝑥), (48)

where
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𝐾*
2(𝑥, 𝑡) = 𝐾2(𝑥, 𝑡) +

𝑥∫︁
𝑡

𝐾2(𝑠, 𝑡)𝑅1(𝑥, 𝑠)𝑑𝑠,

Φ2(𝑥) = Φ1(𝑥) +

𝑥∫︁
0

𝑅1(𝑥, 𝑡)Φ1(𝑡)𝑑𝑡−
𝑘

𝜆

⎡⎣1 − 𝑐ℎ
√
𝜆𝑥+

𝑥∫︁
0

(︁
1 − 𝑐ℎ

√
𝜆𝑡
)︁
𝑅1(𝑥, 𝑡)𝑑𝑡

⎤⎦.
Whence, we conclude that Equation (48) always has a solution that is unique and can be

represented in the form [8]

𝜏(𝑥) = Φ2(𝑥) +

𝑥∫︁
0

𝑅2(𝑥, 𝑡)Φ2

(︂
𝑡

2

)︂
𝑑𝑡, 0 ≤ 𝑥 ≤ 1, (49)

where 𝑅2(𝑥, 𝑡) is the resolvent of the kernel 𝐾*
2(𝑥, 𝑡).

Whence, by virtue of the condition 𝜏(1) = 𝜙2(0) − 𝑤(1), 𝑘 are determined uniquely.
Upon determining 𝜏(𝑥), we find the functions 𝜈(𝑥) and 𝑤(𝑥) from (39) and (18).
Thus, solution of Problem C in the domain Ω2 in view of (18) and (19) is determined uniquely

according to the formula (27), and in the domain Ω1 we arrive to the problem for an nonloaded
equation of the third order [4].

Thus, solution of problem C in the domains Ω1 and Ω2 can be constructed from (27) in view
of (18), (19) and Problem D 11 [4].

Thus, Problem C is uniquely solvable.
Theorem 2 is proved.
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