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ON NECESSARY CONDITIONS FOR EXISTENCE OF
PERIODIC SOLUTIONS IN A DYNAMIC SYSTEM

WITH DISCONTINUOUS NONLINEARITY
AND AN EXTERNAL PERIODIC INFLUENCE

V.V. YEVSTAFYEVA

Abstract. The system of ordinary differential equations with discontinuous nonlinearity of
a non-ideal relay type and an external continuous periodic influence in the right-hand side
is considered in the Euclidean space. Necessary conditions for existence of periodic solutions
with given properties in problems of the specified class imposed on the coefficients of the
system are obtained by means of accurate analytical methods. An approach for finding
switching instants and points of the image point of the required solution is suggested in the
case when the period of the solution is multiple to the period of the function describing the
external perturbation.
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Introduction

The key problem in the theory of nonlinear oscillations is to prove the existence of cyclic
behavior in nonlinear control systems. The present paper suggests an approach to solving
this problem for nonlinear systems of ordinary differential equations containing a hysteresis
nonlinearity and an external perturbation imposed on the control object. Automatic systems
used in seacraft, e.g., heading control systems or stabilizers can be considered as control objects.
Mathematical models of such objects have been studied by a number of authors (see, e.g., [1]–
[3]).

In the present paper, unlike [3], another approach to investigation of systems of the considered
class is used, restrictions imposed on the considered system are relaxed, periodic solutions are
sought to be not only equal, but also multiple to the period of an external perturbation. The
paper [4] considers nonperiodic external influence of the amplitude changing with time. On
the contrary to [5], in the present paper the emphasis is made on finding switching instants
when the desired regimes change over and on the analysis of the coefficient space of the initial
system.

1. Problem statement

A system of ordinary differential equations of the form

𝑌̇ = 𝐴𝑌 + 𝐵𝑢(𝜎) + 𝐾𝑓(𝑡), 𝜎 = (𝐶, 𝑌 ) (1)

is considered in an 𝑛-dimensional Euclidean space 𝐸𝑛. Here 𝐴 is a matrix, vectors 𝐵, 𝐾, 𝐶
are real and constant, 𝑌 is a state vector of the system (𝑌 ∈ 𝐸𝑛). The function 𝑢(𝜎) describes
nonlinearity of a non-ideal relay type with threshold numbers ℓ1, ℓ2 and output numbers 𝑚1,
𝑚2. To be specific, assume that ℓ1 < ℓ2 and 𝑚1 < 𝑚2. The function 𝑢(𝜎(𝑡)) is defined for
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𝑡 ≥ 0 in a class of continuous functions, it can take only two values 𝑚1 and 𝑚2, and is given
as follows. When 𝜎(𝑡) ≤ ℓ1, the equality 𝑢(𝜎(𝑡)) = 𝑚1 holds, and when 𝜎(𝑡) ≥ ℓ2 the equality
𝑢(𝜎(𝑡)) = 𝑚2 holds. If ℓ1 < 𝜎(𝑡) < ℓ2 for all 𝑡1 < 𝑡 < 𝑡2 and 𝜎(𝑡1) = ℓ1 or 𝜎(𝑡1) = ℓ2, then
assume that 𝑢(𝜎(𝑡)) = 𝑢(𝜎(𝑡1)). Finally, if ℓ1 < 𝜎(𝑡) < ℓ2 for all 0 ≤ 𝑡 < 𝑡2, then assume that
𝑢(𝜎(𝑡)) = 𝑢0, where 𝑢0 is one of the numbers 𝑚1 or 𝑚2. In the latter case, the dynamics of the
system differs depending on the choice of the initial state 𝑢0 of the relay. The hysteresis loop
described in the coordinates (𝜎, 𝑢) by equations 𝜎 = 𝜎(𝑡), 𝑢 = 𝑢(𝜎(𝑡)) is run counterclockwise.
The function 𝑓(𝑡) describes the external influence on the system and belongs to the class of
continuous periodic functions.

The problem of existence and finding switching instants when the switch over occurs in relay
for periodic oscillations to appear and be supported in the system is considered.

2. General approach to investigation of the system

A.V. Pokrovskii obtained powerful analytical results in [3] for systems of the considered class.
The existence theorem is proved for at least one asymptotically stable solution with the period
equal to the period of external influence. The positivity condition of the system (restrictions
on the coefficients vector of the feedback 𝐶) is stipulated and the matrix 𝐴 is supposed to be
hurwitzean.

Another approach for investigating systems of the form (1) is suggested in the present paper.
In the coefficient space of the system, it allows one to determine sets to which periodic solutions
with the period multiple to the period of external influence correspond, and if the periods are
equal, the above restrictions to the system are removed.

The present approach is based on exact analytical methods of investigation namely, methods
of the theory of canonical transformations of systems, results by V.I. Zubov [1] built upon the
idea of constructing an auxiliary system in view of the periodicity property of a solution to
autonomous systems, and the method of section for the system parameter space suggested by
R.A. Nelepin [2].

In a phase 𝑛-dimensional space the trajectory of any solution of the system (1) can be
composed of pieces of trajectories due to linear systems of the following form:

𝑌̇ = 𝐴𝑌 + 𝐵𝑚1 + 𝐾𝑓(𝑡), 𝑌̇ = 𝐴𝑌 + 𝐵𝑚2 + 𝐾𝑓(𝑡). (2)

Pieces of trajectories on continuity are “joined together” at the points lying in the hyperplanes
of the form (𝐶, 𝑌 ) = ℓ𝑖 (𝑖 = 1, 2).

To be specific, let us find solutions to the system (1) in the class of continuous, periodic
functions with two switching points that will be referred to as “join” points in what follows.
Closed bounded trajectories correspond to periodic solutions of the system (1) in an 𝑛-
dimensional phase space. In an expanded (𝑛 + 1)-dimensional space (𝑌, 𝑡) an integral curve
consisting of several integral curves corresponds to the periodic solution of the system (1) by
virtue of various systems of the form (2). The curves repeat themselves with a period 𝑇𝐵, which
is further referred to as the period of forced oscillations of the system (1). The switching points
𝑌 1, 𝑌 2 of the periodic solution (the join points of pieces of trajectories) have the following
properties:

𝑌 𝑖 = 𝑌 (𝑡0,𝑚𝑗, 𝑡0) = 𝑌 (𝑡0,𝑚𝑗, 𝑡0 + 𝑇𝐵), (𝐶, 𝑌 𝑖) = ℓ𝑘 ∀𝑖, 𝑗, 𝑘 = 1, 2,

i. e. one can write out 8 various systems depending on the chosen sequence of motions of the
image point of the periodic solution from one hyperplane to another one.

Consider the solution of the system (1) in the Cauchy form

𝑌 (𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑌 (𝑡0) +

𝑡∫︁
𝑡0

𝑒−𝐴(𝜏−𝑡) (𝐵𝑚𝑖 + 𝐾𝑓(𝜏)) 𝑑𝜏 (𝑖 = 1, 2).
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Let us assume that (1) has at least one periodic solution with the period 𝑇𝐵. Let the image
point of the desired periodic solution to the system (1) begin its motion at the point 𝑌 1 on the
hyperplane 𝜎 = ℓ1 at the instant 𝑡0 = 0 and reach the point 𝑌 2 on the hyperplane 𝜎 = ℓ2 at the
instant 𝑡1 by virtue of the system (2) provided that 𝑚𝑖 = 𝑚1. Then it returns to the point 𝑌 1

on the hyperplane 𝜎 = ℓ1 at the instant 𝑇𝐵 by virtue of the system (2) provided that 𝑚𝑖 = 𝑚2.
Let us set up a system of transcendental equations with respect to the switching points and

switching instants on the basis of the periodicity property of the desired solution and taking
into account that the switching points belong to the hyperplanes and the image point of the
solution is moving along the trajectory according to the sequence prescribed above. One has

ℓ1 =
(︀
𝐶, 𝑌 1

)︀
, ℓ2 =

(︀
𝐶, 𝑌 2

)︀
, (3)

where

𝑌 2 = 𝑒𝐴𝑡1𝑌 1 +

𝑡1∫︁
0

𝑒𝐴(𝑡1−𝜏)(𝐵𝑚1 + 𝐾𝑓(𝜏))𝑑𝜏,

𝑌 1 = 𝑒𝐴(𝑇𝐵−𝑡1)𝑌 2 +

𝑇𝐵∫︁
𝑡1

𝑒𝐴(𝑇𝐵−𝜏)(𝐵𝑚2 + 𝐾𝑓(𝜏))𝑑𝜏.

The resulting system of four equations can be solved with respect to 𝑡1, 𝑇𝐵, 𝑌 1, 𝑌 2 by
numerical methods. In order to solve the system (3) in an analytical form let us transform the
initial system.

To be specific, let us assume that the matrix 𝐴 has only simple, nonzero, real eigenvalues
𝜆𝑖 (𝑖 = 1, 𝑛), the system (1) is completely controllable with respect to the input 𝑢(𝜎), i. e. the
inequality

det ||𝐵,𝐴𝐵,𝐴2𝐵, . . . , 𝐴𝑛−1𝐵|| ≠ 0

holds. In this case the system (1) can be reduced to the canonical form by a nonsingular
transformation 𝑌 = 𝑆𝑋:

𝑋̇ = 𝐴0𝑋 + 𝐵0𝑢(𝜎) + 𝐾0𝑓(𝑡), 𝜎 = (Γ, 𝑋), (4)

where

𝐴0 =

⎛⎝𝜆1 0
. . .

0 𝜆𝑛

⎞⎠ , 𝐵0 = 𝑆−1𝐵 =

⎛⎝ 1
. . .
1

⎞⎠ , 𝐾0 = 𝑆−1𝐾, Γ =

⎛⎝𝛾1
. . .
𝛾𝑛

⎞⎠ .

The coefficients 𝛾𝑖 (𝑖 = 1, 𝑛) are calculated by the formula:

𝛾𝑖 =
−1

𝐷′(𝜆𝑖)

𝑛∑︁
𝑘=1

𝑐𝑘𝑁𝑘(𝜆𝑖), (5)

where 𝐷′(𝜆𝑖) = 𝑑𝐷(𝑝)
𝑑𝑝

⃒⃒⃒
𝑝=𝜆𝑖

, 𝑐𝑘 are elements of the vector 𝐶, 𝑁𝑘(𝜆𝑖) =
𝑛∑︀

𝑗=1

𝑏𝑗𝐷𝑗𝑘(𝜆𝑖). Here 𝑏𝑗 is

an element of the vector 𝐵, 𝐷𝑗𝑘 is a cofactor of the element 𝑎𝑗𝑘 of the matrix 𝐴, 𝜆𝑖 are roots
of the algebraic equation 𝐷(𝑝) = det [𝑎𝑘𝛼 − 𝛿𝑘𝛼𝑝] = 0, 𝑎𝑘𝛼 are elements of the matrix 𝐴, 𝛿𝑘𝛼 is
the Kronecker symbol. The transformation matrix 𝑆 has the form

𝑆 = −

⎛⎜⎜⎜⎜⎝
𝑁1(𝜆1)

𝐷′(𝜆1)
· · · 𝑁1(𝜆𝑛)

𝐷′(𝜆𝑛)
... . . . ...

𝑁𝑛(𝜆1)

𝐷′(𝜆1)
. . .

𝑁𝑛(𝜆𝑛)

𝐷′(𝜆𝑛)

⎞⎟⎟⎟⎟⎠ .
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Following [2], we suppose that (𝑛− 1) roots of the equation 𝐷(𝑝) = 0 coincide with (𝑛− 1)

roots of the equation
𝑛∑︀

𝑘=1

𝑐𝑘𝑁𝑘(𝑝) = 0. Then, (𝑛 − 1) values of 𝛾𝑖 defined by the formula (5)

vanish and one value of 𝛾𝑖 is not equal to zero. Denote the index for which 𝛾𝑖 ̸= 0 by 𝑠, i. e.
𝛾𝑠 ̸= 0.

Thus, the system of the 𝑛-th order splits into lower-order systems that can be integrated
successively. This simplifies the system of transcendental equations (3).

Provided that 𝛾𝑖 = 0 (𝑖 ̸= 𝑠), the function 𝜎(𝑡) = (Γ, 𝑋(𝑡)) is determined from the first-order
system

𝜎(𝑡) = 𝛾𝑠𝑥𝑠, 𝑥̇𝑠 = 𝜆𝑠𝑥𝑠 + 𝑢(𝜎) + 𝑘0
𝑠𝑓(𝑡). (6)

The remaining variables 𝑥𝑖 (𝑖 ̸= 𝑠) are defined from nonhomogeneous linear equations of the
first order

𝑥̇𝑖 = 𝜆𝑖𝑥𝑖 + 𝑢(𝜎) + 𝑘0
𝑖 𝑓(𝑡), 𝑖 ̸= 𝑠. (7)

Let us write out a differential equation with respect to the function 𝜎(𝑡):

𝜎̇(𝑡) = 𝜆𝑠𝜎(𝑡) + 𝛾𝑠(𝑢(𝜎(𝑡)) + 𝑘0
𝑠𝑓(𝑡)). (8)

Since periodic solutions of the system (1) and 𝜎(𝑡) = 𝜎(𝑥𝑠(𝑡)) are sought for, the function 𝜎(𝑡)
is supposed to belong to the class of continuous periodic functions. By means of the solution
of Equation (8), one can define periodicity conditions for the function 𝜎(𝑡) and its properties
(the period 𝑇𝐵 and the switching instant 𝑡1).

Solution of the system of equations (6), (7) has the following form:

𝑥𝑖(𝑡) = 𝑥𝑖(0)𝑒𝜆𝑖𝑡 + 𝑒𝜆𝑖𝑡

𝑡∫︁
0

(𝑢(𝜎(𝜏)) + 𝑘0
𝑖 𝑓(𝜏))𝑒−𝜆𝑖𝜏𝑑𝜏,

𝑥𝑠(𝑡) = 𝜎(𝑡)/𝛾𝑠 = (𝜎0/𝛾𝑠)𝑒
𝜆𝑠𝑡 + 𝑒𝜆𝑠𝑡

𝑡∫︁
0

(𝑢(𝜎(𝜏) + 𝑘0
𝑠𝑓(𝜏))𝑒−𝜆𝑠𝜏𝑑𝜏. (9)

The system of equations (9) determines the pointwise mapping of one switching plane into
another one. Let us write out the solution of Equation (8) in the general form

𝜎(𝑡) = 𝜎0𝑒
𝜆𝑠(𝑡−𝑡0) + 𝛾𝑠𝑒

𝜆𝑠𝑡

⎛⎝𝑚𝑖

𝑡∫︁
𝑡0

𝑒−𝜆𝑠𝜏𝑑𝜏 + 𝑘0
𝑠

𝑡∫︁
𝑡0

𝑒−𝜆𝑠𝜏𝑓(𝜏)𝑑𝜏

⎞⎠
with the initial and boundary-value conditions

ℓ1 = 𝜎(ℓ1, 0,𝑚1, 0), ℓ2 = 𝜎(ℓ1, 0,𝑚1, 𝑡1), ℓ1 = 𝜎(ℓ2, 𝑡1,𝑚2, 𝑇𝐵).

The system of transcendental equations for finding only switching instants 𝑡1, 𝑇𝐵 has the
following form:

ℓ2 =

(︂
ℓ1 +

𝛾𝑠𝑚1

𝜆𝑠

)︂
𝑒𝜆𝑠𝑡1 − 𝛾𝑠𝑚1

𝜆𝑠

+ 𝛾𝑠𝑘
0
𝑠

𝑡1∫︁
0

𝑒𝜆𝑠(𝑡1−𝜏)𝑓(𝜏)𝑑𝜏,

ℓ1 =

(︂
ℓ2 +

𝛾𝑠𝑚2

𝜆𝑠

)︂
𝑒𝜆𝑠(𝑇𝐵−𝑡1) − 𝛾𝑠𝑚2

𝜆𝑠

+ 𝛾𝑠𝑘
0
𝑠

𝑇𝐵∫︁
𝑡1

𝑒𝜆𝑠(𝑇𝐵−𝜏)𝑓(𝜏)𝑑𝜏. (10)
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The switching points 𝑋1, 𝑋2 of the transformed system (4) are determined by the following
formulae:

𝑋1 =
(︀
𝐸 − 𝑒𝐴0𝑇𝐵

)︀−1

⎛⎝ 𝑇𝐵∫︁
𝑡1

𝑒𝐴0(𝑇𝐵−𝜏) (𝐵0𝑚2 + 𝐾0𝑓(𝜏)) 𝑑𝜏+

𝑡1∫︁
0

𝑒𝐴0(𝑇𝐵−𝜏) (𝐵0𝑚1 + 𝐾0𝑓 (𝜏)) 𝑑𝜏

⎞⎠ ,

𝑋2 =
(︀
𝐸 − 𝑒𝐴0𝑇𝐵

)︀−1

⎛⎝ 𝑡1∫︁
0

𝑒𝐴0(𝑡1−𝜏) (𝐵0𝑚1 + 𝐾0𝑓(𝜏)) 𝑑𝜏+

𝑒𝐴0𝑡1

𝑇𝐵∫︁
𝑡1

𝑒𝐴0(𝑇𝐵−𝜏) (𝐵0𝑚2 + 𝐾0𝑓(𝜏)) 𝑑𝜏

⎞⎠ .

3. Main result

Consider a model of external perturbation of the following form:

𝑓(𝑡) = 𝑓0 + 𝑓1 sin(𝜔𝑡 + 𝜙1) + 𝑓2 sin(2𝜔𝑡 + 𝜙2), (11)

where 𝑓0, 𝑓1, 𝑓2, 𝜙1, 𝜙2, 𝜔 are real constants.
The function 𝑓(𝑡) of the form (11) can be considered as a truncated Fourier series. Since

any periodic function satisfying the Dirichlet principle can be represented in the form of a
converging Fourier series, the representation (11) is an approximation of an arbitrary periodic
external influence.

The main result of the present paper is the following theorem.
Theorem. Let the function 𝑓(𝑡) have the form (11). Let the system (1) have a periodic

solution with the period 𝑇𝐵 = 𝑘𝑇 , where 𝑘 ∈ N, 𝑇 = 2𝜋/𝜔, 𝜔 > 0. Let us assume that all
eigenvalues of the matrix 𝐴 are prime, real, and at least one of them is positive (𝜆𝑠 > 0), and
the element 𝛾𝑠 of the transformed vector of the feedback Γ is other than zero. Finally, let the
following inequalities hold:
1)

𝑚2 −𝑚1𝑒
𝜆𝑠𝑘𝑇 + 𝜆𝑠(1 − 𝑒𝜆𝑠𝑘𝑇 )(ℓ1/𝛾𝑠 + 𝑘0

𝑠𝐿) > 0,

𝑚1 < −𝜆𝑠

(︂
ℓ1
𝛾𝑠

+ 𝑘0
𝑠𝐿

)︂
< 𝑚2,

where

𝐿 =
𝑓0
𝜆𝑠

+
𝑓1 sin(𝜙1 + 𝛿1)√︀

𝜆2
𝑠 + 𝜔2

+
𝑓2 sin(𝜙2 + 𝛿2)√︀

𝜆2
𝑠 + 4𝜔2

,

𝛿1 = arctg(𝜔/𝜆𝑠), 𝛿2 = arctg(2𝜔/𝜆𝑠);

2) (︂
ℓ1 +

𝛾𝑠
𝜆𝑠

(𝑚1 + 𝑘0
𝑠𝑓0)

)︂
(𝑒𝜆𝑠𝑘𝑇𝐻 − 1)+

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

(︂
sin(𝜙1 + 𝛿1)𝑒

𝜆𝑠𝑘𝑇𝐻 − sin

(︂
𝜔

𝜆𝑠

ln𝐻 + 𝜙1 + 𝛿1

)︂)︂
+

𝛾𝑠𝑘
0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

(︂
sin(𝜙2 + 𝛿2)𝑒

𝜆𝑠𝑘𝑇𝐻 − sin

(︂
2𝜔

𝜆𝑠

ln𝐻 + 𝜙2 + 𝛿2

)︂)︂
> 0,
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where
𝐻 =

𝑚2 −𝑚1

𝜆𝑠(1 − 𝑒𝜆𝑠𝑘𝑇 )(ℓ1/𝛾𝑠 + 𝑘0
𝑠𝐿) + 𝑚2 −𝑚1𝑒𝜆𝑠𝑘𝑇

;

and the equality
3)

ℓ2 = ℓ1𝑒
𝜆𝑠𝑘𝑇𝐻 +

𝛾𝑠
𝜆𝑠

(𝑚1 + 𝑘0
𝑠𝑓0)(𝑒

𝜆𝑠𝑘𝑇𝐻 − 1)+

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

(︂
sin(𝜙1 + 𝛿1)𝑒

𝜆𝑠𝑘𝑇𝐻 − sin

(︂
𝜔

𝜆𝑠

ln𝐻 + 𝜙1 + 𝛿1

)︂)︂
+

𝛾𝑠𝑘
0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

(︂
sin(𝜙2 + 𝛿2)𝑒

𝜆𝑠𝑘𝑇𝐻 − sin

(︂
2𝜔

𝜆𝑠

ln𝐻 + 𝜙2 + 𝛿2

)︂)︂
is true.
Then the system (10) has a unique solution 𝑡1 ∈ (0, 𝑘𝑇 ) defined by the formula 𝑡1 = 𝑘𝑇+ 1

𝜆𝑠
ln𝐻.

Proof.
The system of transcendental equations (10) takes the form

ℓ2 =

(︃
ℓ1 +

𝛾𝑠
𝜆𝑠

(𝑚1 + 𝑘0
𝑠𝑓0) +

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

sin(𝜙1 + 𝛿1)+

𝛾𝑠𝑘
0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

sin(𝜙2 + 𝛿2)

)︃
𝑒𝜆𝑠𝑡1 − 𝛾𝑠

𝜆𝑠

(𝑚1 + 𝑘0
𝑠𝑓0)−

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

sin(𝜔𝑡1 + 𝜙1 + 𝛿1) −
𝛾𝑠𝑘

0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

sin(2𝜔𝑡1 + 𝜙2 + 𝛿2),

ℓ1 =

(︃
ℓ2 +

𝛾𝑠
𝜆𝑠

(𝑚2 + 𝑘0
𝑠𝑓0) +

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

sin(𝜔𝑡1 + 𝜙1 + 𝛿1)+

𝛾𝑠𝑘
0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

sin(2𝜔𝑡1 + 𝜙2 + 𝛿2)

)︃
𝑒𝜆𝑠(𝑇𝐵−𝑡1) − 𝛾𝑠

𝜆𝑠

(𝑚2 + 𝑘0
𝑠𝑓0)−

𝛾𝑠𝑘
0
𝑠𝑓1√︀

𝜆2
𝑠 + 𝜔2

sin(𝜔𝑇𝐵 + 𝜙1 + 𝛿1) −
𝛾𝑠𝑘

0
𝑠𝑓2√︀

𝜆2
𝑠 + 4𝜔2

sin(2𝜔𝑇𝐵 + 𝜙2 + 𝛿2), (12)

provided that 𝜆𝑠 > 0. If the periodic solution to the system (1), (11) is sought for with a
prescribed period, namely 𝑇𝐵 = 𝑘𝑇 , 𝑘 ∈ N, 𝑇 = 2𝜋/𝜔, the system of transcendental equations
(12) depends only on one variable 𝑡1, and as a result of the above choice of the feedback
coefficients 𝛾𝑖 (𝑖 = 1, 𝑛), it is analytically solvable with respect to this variable.

Let us substitute the first equation of the system (12) into the second one. Upon
transformation, one has

(1 − 𝑒𝜆𝑠𝑘𝑇 )

(︃
ℓ1 + 𝛾𝑠𝑘

0
𝑠

(︃
𝑓0
𝜆𝑠

+
𝑓1√︀

𝜆2
𝑠 + 𝜔2

sin(𝜙1 + 𝛿1)+

𝑓2√︀
𝜆2
𝑠 + 4𝜔2

sin(𝜙2 + 𝛿2)

)︃)︃
+

𝛾𝑠
𝜆𝑠

(𝑚2 −𝑚1𝑒
𝜆𝑠𝑘𝑇 ) =

𝛾𝑠
𝜆𝑠

(𝑚2 −𝑚1)𝑒
𝜆𝑠(𝑘𝑇−𝑡1),

whence one obtains a formula for determining the variable 𝑡1.
Then let us define the conditions on parameters that provide the existence of the solution

𝑡1.
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The expression under the logarithm in the denominator of the formula defining the variable
𝑡1 should be positive because 𝑚2 > 𝑚1 by assumption. This entails the first inequality of
Condition 1) of the theorem.

Since the variable 𝑡1 is defined as the first switching instant, it obviously should belong to
the interval (0, 𝑘𝑇 ), where 𝑘 ∈ N. This is possible provided that the following inequalities hold:

𝑚2 −𝑚1 < 𝜆𝑠(1 − 𝑒𝜆𝑠𝑘𝑇 )
(︀
ℓ1/𝛾𝑠 + 𝑘0

𝑠𝐿
)︀

+ 𝑚2 −𝑚1𝑒
𝜆𝑠𝑘𝑇 ,

𝑚2 −𝑚1 > 𝜆𝑠
(1 − 𝑒𝜆𝑠𝑘𝑇 )

𝑒𝜆𝑠𝑘𝑇

(︀
ℓ1/𝛾𝑠 + 𝑘0

𝑠𝐿
)︀

+
𝑚2

𝑒𝜆𝑠𝑘𝑇
−𝑚1.

Upon transformation, the latter inequalities take the form of the second inequality of Condition
1) of the theorem.

Condition 2) of the theorem follows from the assumption that ℓ2 > ℓ1.
The solution 𝑡1 is a solution of the system of transcendental equations if it satisfies the first

equation of the system (12). This provides Condition 3) of the theorem.
The theorem is proved completely.
Remark 1. The system of inequalities and equalities in Conditions 1)–3) of the proved

theorem is consistent, because it is determined by strict analytical calculation with the use
of equivalent passages and properties of the logarithmic function. Therefore, one can make an
example of existence of a 𝑘𝑇 -periodic solution. Indeed, e.g., if 𝑓(𝑡) = 1+ 2 sin(𝑡+ 𝜋

3
) + 5 sin(2𝑡),

𝑇𝐵 = 2𝜋, 𝜆𝑠 = 0, 2, 𝛾𝑠 = −0, 5, the mentioned system of inequalities and equalities holds when
𝑚1 = −5, 𝑚2 = 15, 73, ℓ1 = −6, 𝑘0

𝑠 = −2, and the system (10) has a unique solution 𝑡1 = 3, 51.
Remark 2. The theorem formulates the necessary conditions for existence of a periodic

solution to a canonical system of equations and, due to a nonsingular transformation, to the
initial system. Moreover, properties of the desired periodic solution for the prescribed period
𝑇𝐵 = 𝑘𝑇 are defined, namely the instant of the first switch 𝑡1 and two switching points 𝑌 1 =
𝑆𝑋1, 𝑌 2 = 𝑆𝑋2.

Remark 3. The system of transcendental equations is composed of the necessary conditions
for existence of at least one periodic solution with given properties. Therefore, when the system
of transcendental equations does not have the solution 𝑡1, conditions on the canonical system
coefficients define the sets in the coefficient space of the canonical system (by virtue of the
nonsingular transformation in the space of the initial system), where the desired periodic
solutions cannot occur.
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