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INTEGRALS OF EXPONENTIAL FUNCTIONS WITH
RESPECT TO RADON MEASURE

S.G. MERZLYAKOV

Abstract. Properties of sets of convergence for integrals of exponential functions in a
finite-dimensional Euclidean space are studied in the paper. It is shown that these sets are
always convex. In particular, these sets include the sets of absolute convergence of series of
exponential functions.

A special class of convex sets is introduced and a complete description of sets of
convergence is obtained for the case of open and relatively close convex sets in terms of
this class.

Necessary and sufficient conditions for any set of convergence to be open and
independently unbounded are formulated.

Keywords: convex sets, Radon measure, Laplace integrals, absolutely convergent series of
exponentials.

1. Introduction

The first result related to the subject of the present paper can be considered to be the
following property of exponential series (see [1], [2], p. 194–195).

The set of absolute convergence of the exponential series
∞∑
n=1

ane
λnz, an, λn ∈ C, n ∈ N, |λn| → ∞

is convex, the series converges uniformly on compacts inside the set.
The proof of convexity is carried over directly to multidimensional exponential series, whereas

the second part does not follow from the cited works.
Properties of sets of absolute convergence of series of exponential monomials of one complex

variable depending on the coefficients, satisfying certain conditions, has been considered in the
article [3].

2. Definitions and preliminary results

Let E be a finite-dimensional Euclidean space over a field of real numbers. In what follows,
a scalar product of elements x, y ∈ E is written as xy.

A typical example of such space is the space Rm, m ∈ N with an ordinary scalar product.
Another example is a finite-dimensional Euclidean space H over a field of complex numbers

with a scalar product zw, if the new scalar product is given as

〈z, w〉 = Re zw,

where z, w ∈ H.
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Denote a unit sphere, and a closed unit ball with the centre at zero of the space E by S and
B, respectively.

The support function of the set M ⊂ E is determined by the formula

H(λ,M) = sup
x∈M

λx, λ ∈ E.

It is a homogeneous convex function.
Due to homogeneity, it is sufficient to know the support function on the unit sphere.
Let us draw examples of support functions.

Example 1 For a vector α ∈ S and a number c ∈ R, the support function of the hyperplane
M = {x ∈ E : αx = c} is given by the formula

H(s,M) =

{
+∞, s 6= ±α
± c, s = ±α ,

where s ∈ S.

Indeed, let s ∈ S, s 6= ±α. Manifestly, in this case the number t = αs satisfies the inequality
|t| < 1. For a fixed number r ∈ R, the vector

x =
c− rt
1− t2

α +
r − ct
1− t2

s

obviously has the property αx = c, sx = r, whence follows the unknown.

Example 2 For a vector α ∈ S and a number c ∈ R, the support function of the subspace
M = {x ∈ E : αx 6 c} is given by theformula

H(s,M) =

{
+∞, s 6= α

c, s = α
,

where s ∈ S.

This can be readily deduced from the above.

The closure and the interior of the set M are written as M and intM, respectively.
Denote by aff M the affine hull of the set M , i.e. the set of vectors of the form t1x1+· · ·+tkxk,

where xj ∈ M, tj ∈ R, j = 1, . . . , k, and t1 + · · · + tk = 1. For any vector a ∈ aff M, the set
aff M − a is a linear space.

Let us define the relative interior riM of the set M as its interior in the space aff M with an
induced topology.

If the convex set M is not empty, then the set riM is not empty as well (see [4], p. 60).
Let us indicate an orthogonal projection of the space E to the subspace L by ΠL for the

linear subspace L ⊂ E.
Let S be a closed subset of the unit sphere S.
Let us define a weakly S-convex hull of the set M as a set of points x ∈ E, satisfying the

condition
sx 6 max

16j6k
sxj, s ∈ S, (1)

for a certain system of vectors x1, . . . , xk ∈ M . This set will be written as convSM . Sets,
corresponding to their weakly S-convex hull, are referred to as weakly S-convex.

Obviously, a weakly S-convex hull preserves the injections, namely:

M1 ⊂M2 ⇒ convSM1 ⊂ convSM2. (2)

One can readily observe that in case of the equality S = S, the weakly S-convex hull coincides
with an ordinary convex hull.
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As it can be readily demonstrated, for any set M ⊂ E, there exists the equality

H(s, convSM) = H(s,M), s ∈ S. (3)

For the number ε > 0, assume that

Sε = {s ∈ S : ∃u ∈ S, |s− u| 6 ε} .

In what follows the following simple result will be useful.

Lemma 1. For the set M ⊂ E and the compact

K ⊂ {x ∈ E : sx < H(s,M), s ∈ S} ,

there are a number ε > 0 and a system of vectors x1, . . . , xk ∈M such that the injection

K ⊂ convSε {x1, . . . , xk}

holds.

Proof. For any fixed points y0 ∈ K and s0 ∈ S, there is a vector x0 ∈ M with the condition
s0y0 < s0x0. Due to continuity, one obtains the inequality sy < sx0, where |s−s0| < δ, |y−y0| <
δ, s ∈ S, y ∈ E, for a certain number δ > 0.

However, the set S×K is a compact in the topological product S×E therefore, one can find
a number ε > 0 and vectors x1, . . . , xk ∈M such that

sy < max
16j6k

sxj, s ∈ Sε, y ∈ K,

whence the unknown follows.

Corollary 1. Let us assume that the set M ⊂ E is weakly Sε-convex for any number ε > 0.
Then, the set intM is weakly S-convex and the equality

intM = {x ∈ E : sx < H(s,M), s ∈ S} (4)

holds.

Indeed, if the point x belongs to the left-hand side of the relation, then there is a number
ε > 0, for which the injection x+ εB ⊂M takes place and therefore, sx+ ε 6 H(s,M), s ∈ S,
so that the point lies in the right-hand side.

The reverse injection follows from the condition on the set M and the later lemma.
The right-hand side of the relation (4) is obviously weakly S-convex.

Corollary 2. For a convex set M ⊂ E and the compact K ⊂ riM, there are vectors
x1, . . . , xk ∈M such that

K ⊂ conv {x1, . . . , xk} .

One can consider that 0 ∈ riM .
Let L = aff M . Using the lemma for the Euclidean space L in the case S = L ∩ S, find the

system of points x1, . . . , xk ∈ riM , satisfying the relation

sx 6 max
16j6k

sxj, s ∈ S, x ∈ K.

Manifestly, there are equalities sx = ΠL(s)x, x ∈ M for an arbitrary point s ∈ S, whence the
unknown follows.

proposition 1. The injection convSK ⊂ riM holds for a weakly S-convex set M ⊂ E and
the compact K ⊂ riM.



INTEGRALS OF EXPONENTIAL FUNCTIONS WITH RESPECT TO RADON MEASURE 59

Proof. According to the above proved result, there are points x1, . . . , xk ∈M such that the
injection

K ⊂ conv {x1, . . . , xk}
holds and therefore, K ⊂ convS {x1, . . . , xk}. The latter set is weakly S-convex and closed,
which provides the desired.

The set M , for which the equality

M = {x ∈ E : sx 6 H(s,M), s ∈ S} (5)

holds, is said to be S-convex (see [5], Chapter III). Such set is obviously closed.
As it can be readily demonstrated, the set

{x ∈ E : sx 6 H(s,D), s ∈ S}
is S-convex for any set D ⊂ E. A particular case of such sets is obviously the set
convS {x1, . . . , xk} for an arbitrary system of vectors x1, . . . , xk ∈ E.

Manifestly, S-convex sets are weakly S-convex, and the latter are convex.

Note, that the operations defined above are permutable with the shifts, namely:

x+M = x+M, int (x+M) = x+ intM,

ri (x+M) = x+ riM, aff (x+M) = x+ aff M,

convS(x+M) = x+ convSM, H(s, x+M) = sx+H(s,M),

(6)

where the set M ⊂ E, x ∈ E.

3. Properties of special convex sets

The given section presents properties of S-convex and weakly S-convex sets (see also [6], §4).
The following simple facts are true.

proposition 2. The intersection of weakly S-convex sets is weakly S-convex.

proposition 3. Let {Mα : α ∈ A} be a family of linearly ordered sets with respect to the
injection Mα ⊂ E.

Then,
convS

⋃
α∈A

Mα =
⋃
α∈A

convSMα.

Corollary The combination of a sequence of weakly S-convex sets increasing in injection is
weakly S-convex.

proposition 4. Let the set M ⊂ E be weakly S-convex and not empty.
Then, the following sets are weakly S-convex as well:
1. M + x0, x0 ∈ E.
2. tM, t > 0.
3. riM .
4. M .
5. aff M .

Proof. This is obvious for the first two sets.
In view of the equalities (6), one can consider that 0 ∈ riM , and the last three sets are

weakly S-convex by virtue of the known equalities

riM =
⋃

0<t<1

tM, M =
⋂
t>1

tM, aff M =
⋃
t>0

tM,

and the above statements.
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The following result is necessary to proceed.

proposition 5. Let us assume that M ⊂ E is a convex set and the condition

riM
⋂

ri convSM 6= ∅

holds for it.
Then,

ri convSM = convSriM.

Proof. Without restriction of generality, one can consider that

0 ∈ riM
⋂

ri convSM.

Applying the proved properties of weakly S-convex hulls, one obtains

ri convSM =
⋃
t<1

t convSM =
⋃
t<1

convStM = convS
⋃
t<1

tM = convSriM,

which proves the statement.
Corollary 1 Let us assume that the relation

U
⋂

ri convSU 6= ∅

holds for a convex relatively open set U ⊂ E.
Then, the set convSU is relatively open as well.

Corollary 2 Let us assume that M ⊂ E is a convex set and the injection

ri convSM ⊂M

holds for it.
Then, the set riM is weakly S-convex.

Indeed, on the basis of the condition on the set and the relation M ⊂ convSM, one can
conclude that the convex sets convSM and M are of one dimension. In this case, the injection
ri convSM ⊂ riM holds obviously, and the unknown follows from the above statement and the
injection convSriM ⊃ riM .

Denote by ρ(x,M) the distance from the point x to the set M for the point x ∈ E and the
set M ⊂ E.

For the set M ⊂ E, ∂ M stands for the relative boundary of the set M .
The following result will be of use.

Lemma 2. Let M ⊂ E be a closed convex set.
There is a relation

max
s∈S

[sx−H(s,M)] =

{
ρ(x, ∂ M), x 6∈M
−ρ(x, ∂ M), x ∈M

.

Proof. Let us assume that r = ρ(x, ∂ M) for the point x ∈ E and denote by x0 ∈ E the point
such that the equality |x0 − x| = r holds.

If x 6∈M , one can readily deduce the existence of the vector s0 ∈ S from the the Khan-Banach
theorem and that for any vectors y ∈ E and w ∈Mthe injection

|y − x| 6 r ⇒ s0y > s0w

holds, whence the inequality s0x− r > H(s0,M) follows.
On the other hand, for any vector s ∈ S, one obtains

−H(s,M) 6 −sx0 = s [−x+ (x0 − x)] 6 −sx+ r,
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and the first half of the lemma is proved.
Let x ∈M . In this case, the inequality sx+ r 6 H(s,M), s ∈ S holds.
Conversely, one obtains

H(s0,M) = s0x0 = s0 [x+ (x0 − x)] 6 s0x+ r

for the point s0 ∈ S defining a tangent hyperplane to the set M at the point x0. This proves
the lemma.

Corollary The function

f(x) =

{
ρ(x, ∂ M), x 6∈M
−ρ(x, ∂ M), x ∈M

is convex for a closed convex set M ⊂ E.

Indeed, this follows from the proved lemma and Theorem 5.5 of the monograph [4].

proposition 6. Let L1 ⊂ E be a linear subspace, {0} 6= L1 6= E, L2 = L⊥1 , the set S =
{s ∈ S : |ΠL1(s)| > ε} for a certain number ε, 0 < ε 6 1, and the convex set U ⊂ L1 be open
in the topology of the space L1.

Then, the relation
convSU = {x ∈ E : x = x1 + x2, x1 ∈ U, x2 ∈ L2,
√

1− ε2|x2| < ερ(x1, ∂ U)
} (7)

holds.

Proof. Let us denote the right-hand side of the equality (7) by D and demonstrate that there
is a relation

D = {x ∈ E : sx < H(s, U), s ∈ S} . (8)
Note that the equality

H(s, U) = H(ΠL1(s), U)

holds due to the injection U ⊂ L1.
Any vector x, belonging to the right-hand side of (8), is uniquely represented in the form

x = x1 + x2, x1 ∈ L1, x2 ∈ L2. If x2 6= 0, then assume that

s2 =

√
1− ε2x2

|x2|
.

Otherwise, let s2 be an arbitrary vector of the space L2 with the condition |s2| =
√

1− ε2.
For any point s1 ∈ L1, |s1| = ε, the vector s = s1 + s2 belongs to the set S. Therefore,

sx = s1x1 + s2x2 = s1x1 +
√

1− ε2|x2| < H(s1, U), and one can readily deduce from Lemma 2
that x1 ∈ L1 and

√
1− ε2|x2| < ερ(x1, ∂ U).

Conversely, let the point x belong to the left-hand side of (8). Any vector s ∈ S can be
represented in the form s = s1 + s2, s1 ∈ L1, s2 ∈ L2 and, by condition, the inequalities
|s1| > ε, |s2| 6

√
1− ε2 hold. Using Lemma 2, one obtains

sx = s1x1 + s2x2 < H(s1, U)− |s1|ρ(x1, ∂ U) + ερ(x1, ∂ U) 6 H(s1, U),

which proves the equality (8).
Corollary 1 of Lemma 1 entails the equality

int convSU = D.

Since the set D is obviously open and U ⊂ D, the unknown result is finally obtained from
Corollary 1 of the Proposition 5.
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proposition 7. Let us assume that the hyperplane L = {x ∈ E : αx = 0} for a certain vector
α ∈ S, the set S = {s ∈ S : αs 6 ε} for a fixed number ε, 0 6 ε < 1, and that the convex set
U ⊂ L is open in the topology of the space L.

Then, the relation
ri convSU = {x ∈ E : x = x1 + tα, x1 ∈ U,

t > 0, εt <
√

1− ε2ρ(x1, ∂ U)
} (9)

holds.

Proof. Similarly to the above, denote the right-hand side of the equality (9) by D and
demonstrate that the relation (8) holds true.

Any vector x, belonging to the right-hand side of (8), is uniquely represented in the form
x = x1 + tα, x1 ∈ L, t ∈ R, and since the point −α obviously belongs to the set S, the
inequality

−αx = −t < H(α, U) = 0

should hold, i.e. t > 0.
The vector s =

√
1− ε2s1 + εα belongs to the set S for any vector s1 ∈ L, |s1| = 1.

Therefore, sx = s1x1 + εt < H(s1, U), and Lemma 2 readily provides that x1 ∈ L1 and
tε <

√
1− ε2ρ(x1, ∂ U).

The reverse injection is proved similarly to the above and the unknown quantity follows from
the relation (3).

Let us draw several results on the S-convexity of weakly S-convex sets.

proposition 8. The closed weakly S-convex set M ⊂ E with a nonempty interior is S-
convex.

Proof. One can assume that 0 ∈ intM .
It can be inferred from Proposition 4 and corollary 1 of Lemma 1 that

intM = {x ∈ E : sx < H(s,M), s ∈ S} .
One can readily see that this representation entails the relation

M ⊂ {x ∈ E : sx 6 H(s,M), s ∈ S} .
Conversely, let x ∈ E and sx 6 H(s,M), s ∈ S. Manifestly,

H(s,M) > 0, s ∈ S.
Therefore,

sy < H(s,M), s ∈ S,
where y = tx, holds for the number t, 0 < t < 1 so that tx ∈ intM and hence, x ∈M .

proposition 9. The equality

convSK = {x ∈ E : sx 6 H(s,K), s ∈ S} (10)

holds for a convex compact K ⊂ E.

Proof. Without restriction of generality, one can consider that 0 ∈ riK.
Manifestly, the left-hand side of the relation (10) is a subset of the right-hand one.
Conversely, let us assume that the inequality

sx 6 H(s,K), s ∈ S
holds for the point x ∈ E. Then, one obtains

sy 6 H(s, tK), s ∈ S,
where y = tx, for the number t, 0 < t < 1.
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Evidently, the compact tK is a subset of riK. Therefore, Corollary 2 of Lemma 1 leads to
the conclusion that

H(s, tM) 6 max
16j6k

sxj, s ∈ S

for some vectors x1, . . . , xk ∈ K.
Thus, tx ∈ convSK for any number t, 0 < t < 1, whence the unknown quantity follows.
As it is known, the convex hull of the compact is a compact. Let us demonstrate that a

weakly S-convex hull of a compact is not closed in general.

Example 3 Let

E = R3, s0 =

√
2

2
(1, 0, 1), sn =

√
2

2

(
cos

1

n
, sin

1

n
, 1

)
, n ∈ N,

S = {s0, s1, s2, . . . , } , K =
{

(a, b, 0) ∈ R3 : a2 + b2 6 1
}
.

Clearly, S is a closed subset of a unit sphere and K is a convex compact.
Let us prove that the point y = (0, 0, 1) does not belong to the set convSK.
Indeed, suppose there are points x1, . . . , xk ∈ K, and the relations

sny 6 max
16j6k

snxj, n ∈ N (11)

hold for them.
Let xj = rj(cos tj, sin tj, 0), 0 6 rj 6 1, 0 6 tj < 2π, j = 1, . . . , k, and j(n) be the index for

which the maximum is reached in the formula (11).
In this case √

2

2
6 rj(n)

√
2

2
cos

(
1

n
− tj(n)

)
,

or rj(n) = 1, tj(n) = 1
n
. The latter equality is not realizable for all n. We have arrived to a

contradiction.
On the other hand H(sn, K) =

√
2/2 = sn(0, 0, 1), n ∈ N0, and from Proposition 9 one

concludes that (0, 0, 1) ∈ convSK. Hence, a weakly S-convex hull of the compact K is not
closed.

proposition 10. The hyperplane M = {x ∈ E : αx = c} is weakly S-convex for the vector
α ∈ S and the number c ∈ R if and only if ±α ∈ S.

In this case, it is S-convex.

Proof. Let us assume that c = 0 and

K = M ∩ S.

If ±α ∈ S then, according to Example 1, the set M satisfies the relation (5) so that it
becomes S-convex.

Conversely, assume that the hyperplane M is weakly S-convex, but α 6∈ S. Since the set S
is closed, there is a number ε, 0 < ε < 1 such that the condition

|s− α| > ε, s ∈ S

holds.
The set M is closed as well and applying the statement 9 and the property (2), one obtains

{x ∈ E : sx 6 H(s,K), s ∈ S} ⊂M. (12)

Any vector s ∈ S is uniquely representable in the form

s = tα + u, t ∈ R, u ∈ E, αu = 0.
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Hence, 1 = t2 + |u|2. One has

|s− α| = 1− 2t+ t2 + |u|2 = 2− 2t > ε

for the points s ∈ S.
Evidently, the equality

H(s,K) = |u| =
√

1− t2
holds for the support function of the compact K and the previous calculations readily provide
the injection of the vector

2ε2 − ε4

4− ε2
α

into the left-hand side of the relation (12), but this vector is not included into the right-hand
side.

The resulting contradiction demonstrates that α ∈ S. The situation is similar for the point
−α and the statement is proved.

Let us demonstrate now that classes of S-convex and weakly S-convex sets differ.
Example 4 Let

E = R3, M =
{(
x1, x2, 0

)
∈ R3 : x1 6 0

}
,

ϕ(t) =
(
sin t cos t, cos2 t, sin t

)
, S = {ϕ(t) : −π 6 t 6 π} .

Let us suppose that the relation (1) holds for the points x ∈ R3, x1, . . . , xk ∈M :

x1 sin t cos t+ x2 cos2 t+ x3 sin t 6 max
16j6k

(
x1
j sin t cos t+ x2

j cos2 t
)
, −π 6 t 6 π.

Substituting the values t = ±π into the inequalities, one obtains x3 = 0.
Cancelling out entails

x1 sin t+ x2 cos t 6 max
16j6k

(
x1
j sin t+ x2

j cos t
)
, −π < t < π.

Whence, the inequality x1 6 0 follows. Thus, the set M is weakly S-convex.
Let us determine the points x ∈ R3 such that the inequality

sx 6 H(s,M), s ∈ S (13)
holds. The support function of the set M obviously satisfies the relation

H(ϕ(t),M) =

{
+∞, t 6= ±π

0, t = ±π.
Therefore, the inequality (13) is equivalent to the equality x3 = 0 so that the set M is not
S-convex.

Let us demonstrate how the affine and weakly S-convex hulls are connected.

proposition 11. The equality

aff convSM = aff convSaff M

holds for a convex set M ⊂ E.

Proof. The left-hand side of the relation obviously lies in the right-hand one.
In order to prove the reverse injection, it suffices to demonstrate that

aff convSM ⊃ convSaff M,

and the condition 0 ∈ riM can be assumed to hold true.
Let the point x belong to the right-hand side of the latter formula:

sx 6 max
16j6k

sxj, s ∈ S,
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for some points x1, . . . , xj ∈ aff M .
The set M is the neighborhood of zero in a linear topological space aff M . Therefore, there

is a number t > 0 such that txj ∈M, j = 1, . . . , k and hence, tx ∈ convSM .
The statement is proved.
Let us provide a result for a particular case of spherical sets.

Let us term the set S as a spherically convex one if the cone

{ts : t > 0, s ∈ S}

is convex.

proposition 12. Let the set M ⊂ E be convex, the set
S ⊂ S be spherically convex, and V = convS {0}.

Then,
convSM = M + V.

Proof. There are vectors x1, . . . , xk ∈M with the condition

sx0 6 max
16j6k

sxj, s ∈ S

for the point x0 ∈ convSM. Suppose that K = conv {x1, . . . , xk} , C = convS. The spherical
convexity of the set S entails the inequality

0 6 max
x∈K

s(x− x0), s ∈ C,

and applying the minimax theorem (see [4], p. 404), one obtains

0 6 max
x∈K

min
s∈C

s(x− x0).

Thus, there is a point y ∈ K, for which 0 6 s(y − x0), s ∈ C. Hence, x0 − y ∈ V , so that the
injection x0 ∈M + V holds true.

Conversely, let the vector x0 ∈M + V . Then, obviously, x0 ∈ convS {x1} for a certain point
x1 ∈M , and the statement is proved.

Corollary Let us assume that the conditions of Proposition 12 are satisfied.
The set M is weakly S-convex if and only if the relation

M + V = M

holds.
The statement 12 admits the conversion and the following result are necessary to prove this.

Lemma 3. The equality
S \ int convSB = S (14)

holds for the set S and a sphere B.

Proof. Let the point x belong to the left-hand side of the formula (14). According to Corollary
1 of Lemma 1 it means that the inequality sx > 1 holds for some vector s ∈ S. But since the
points s and x belong to the unit sphere, the equality x = s holds. Therefore, x ∈ S.

Conversely, assume that x ∈ S. Obviously, the relation sx < 1, s ∈ S does not hold. Hence,
the point x belongs to the left-hand side of the equality (14).

The lemma is proved.
Corollary. The solid sphere B is weakly S-convex if and only if the equality S = S holds.
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proposition 13. Let the equality

convSB = B + V,

where V = convS {0} , hold for the set S.
Then, the set S is spherically convex.

Proof. Denote by S1 the set

S ∩ conv {ts : t > 0, s ∈ S} .

Manifestly, the set is closed, spherically convex, and the equality convS1 {0} = V holds.
Therefore, Proposition 12 entails the equality convS1B = B + V . In this case, the equality
14 entails the equality S = S1, which completes the proof.

4. Exponential integral

In this section we demonstrate that the convergence sets for exponential integrals are closely
connected to weakly S-convex sets.

Let Λ be an arbitrary closed subset of the set E. The set of points x ∈ E, where the integral∫
Λ

eλx dµ(λ) (15)

is determined, will be investigated for the complex Radon measure µ on the set Λ.
As it is known, the integral

∫
Λ
f(λ) dµ(λ) of a continuous function f is determined if and

only if the integral
∫

Λ
|f(λ)| d|µ|(λ) is defined.

A significant example of the integral (15) is the series
∞∑
n=1

ane
λnx, x ∈ E, an ∈ C, λn ∈ Λ, n ∈ N, (16)

for which the condition
∀R ∈ R

∑
|λn|6R

|an| <∞

is satisfied.
Note, that integrals of the form (15) take part in the description of solutions to partial

differential equations with constant coefficients.

proposition 14. The set M ⊂ E of existence of the integral (15) is convex, and the integral
itself converges uniformly on compacts of the set riM to a continuous function.

Proof. A function of the form

fn(x) =

∫
{λ∈Λ:|λ|6n}

eλx dµ(λ), n ∈ N,

is represented by the Taylor series convergent everywhere:

fn(x) =
∞∑
k=0

(∫
{λ∈Λ:|λ|6n}

λk dµ(λ)

)
xk

k!
.

Therefore, it is a real analytic function. Like in Theorem 3.1.1 of the monograph [2], it is
demonstrated that the integral ∫

Λ

eλx d|µ|(λ)
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converges on some convex set M ⊂ E and, evidently, it defines the function convex on it. In
this case, the function is continuous on the set riM (see [4]), and by the Dini theorem

lim
n→∞

∫
{λ∈Λ:|λ|6n}

eλx d|µ|(λ) =

∫
Λ

eλx d|µ|(λ)

uniformly on any compact of the set riM .
Corollary Let the integral ∫

Λ

e〈λ,z〉 dµ(λ)

in the space H converge on the set M, and the set riM have a complex structure. Then, the
integral is holomorphic on this set.

Let us term the nonempty set M ⊂ E as the set of Λ-integrability, if there is a positive Radon
measure µ on the set Λ and the set of points x ∈ E of existence of the integral (15) coincides
with the set M . As it has been demonstrated above, the set of Λ-integrability is convex.

In what follows, µ is considered to be the positive Radon measure on the set Λ. A simple,
but important result occurs.

Lemma 4. Let us assume that the condition

λ ∈ Λ, |λ| > R⇒ λ

|λ|
∈ S (17)

is satisfied for the set S ⊂ S and the number R > 0.
Then, the following inequalities hold for the points x, x1, . . . , xk ∈ E, x ∈ convS {x1, . . . , xk}:

f(x) 6 eR|x−x1|f(x1) +
k∑
j=2

f(xj),

where

f(x) =

∫
Λ

eλx dµ(λ). (18)

Proof. Evidently, the inequality
λx 6 max

16j6k
λxj

holds for coefficients with the condition |λ| > R. Whence,

eλx 6
k∑
j=1

eλxj

for such coefficients.
Let us estimate the function f at the point x:

f(x) =

∫
{λ∈Λ:|λ|6R}

eλx dµ(λ) +

∫
{λ∈Λ:|λ|>R}

eλx dµ(λ) 6

6
∫
{λ∈Λ:|λ|6R}

eλ(x−x1)eλx1 dµ(λ) +
k∑
j=2

∫
{λ∈Λ:|λ|>R}

eλx dµ(λ) 6

6 eR|x−x1|f(x1) +
k∑
j=2

f(xj).
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Let us introduce a set of limiting directions P (Λ) for the set Λ as a set of points s ∈ S, for
which there is a sequence of elements {λn ∈ Λ, n ∈ N}, such that

lim
n→∞

λn
|λn|

= s, lim
n→∞

|λn| =∞.

This set is obviously closed.
Let us demonstrate that the condition of the previous lemma holds for swelling of the set of

limiting directions of the set Λ.

proposition 15. There is a number R = R(ε) > 0 for any number ε > 0 such that the set
S = P (Λ)ε satisfies the relation (17).

Proof. Let us assume that such R does not exist for a certain number ε > 0. Hence, there is
a sequence {λn : n ∈ N} of elements Λ with the property

|λn| > n,
λn
|λn|
6∈ S. (19)

One can choose a sequence {λnk
: k ∈ N} from this sequence such that

lim
k→∞

λnk

|λnk
|

= s

for a certain point s ∈ S.
By virtue of the relation (19), the point s, does not belong to the set P (Λ), which contradicts

the definition of the set. This completes the proof.

proposition 16. Let the integral (15) be defined on the set M ⊂ E and S be equal to P (Λ).
Then, the integral is determined on the set int convSM as well, and there are a number c > 0

and points x1 . . . , xk ∈ M , depending only on the set Λ for any its compact K such that the
inequality

max
x∈K

f(x) 6 cmax {f(x1), . . . , f(xk)}

holds for the function (18).

Proof. Denote by D the set of existence points of the integral (15). It follows from Proposition
15, Lemma 4, and Corollary 1 of Lemma 1 that the set intD is weakly S-convex.

As it has been demonstrated, the set D is weakly S-convex as well. Therefore, convSM ⊂ D
and hence, int convSM ⊂ intD, and the statement follows from the above references.

Let us demonstrate that such result is untrue for the relative interior.

Example 5 Let

E = R2, λ2n−1 = (n, n2), λ2n = (n,−n2), n ∈ N, Λ = {λn} .

The set M of convergence of the series
∞∑
n=1

eλnx, x ∈ R2,

obviously coincides with the set {(x1, 0) : x1 < 0}, and the set S of limiting directions of the
sequence Λ equals {(0, 1), (0,−1)}.

Manifestly, convSM = {(x1, 0) : x1 ∈ R} so that

ri convSM = convSM 6= M.

Let us show that one can limit the consideration to measures on subspaces to investigate
incomplete-dimensional sets of Λ-integrability.
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proposition 17. Let the constant functions be integrable with respect to the measure µ and
L be a subspace of the space E.

Then, there is a positive Radon measure µ1 on the set Λ1 = ΠL(Λ) such that the function
expλ1x, λ1 ∈ Λ1 is µ1-integrable, and the equality∫

Λ

eλx dµ(λ) =

∫
Λ1

eλ1x dµ1(λ1) (20)

holds for the points x ∈ L, where the function expλx, λ ∈ Λ is µ-integrable.

Proof. Let us determine the functional F on the set C0(Λ1) of continuous functions on the
set Λ1 with a compact carrier according to the formula

〈F, f〉 =

∫
Λ

f(ΠL(λ)) dµ(λ).

The inequality

〈F, f〉 6 max
Λ1

|f(λ)|
∫

dµ(λ)

leads to the conclusion that the functional provides the positive Radon measure µ1 on the set
Λ1. The equality (20) follows from the elementary properties of an integral.

The following construction, correlating the closed subsets of a unit sphere to linear subspaces
of the space E, will be of use to describe properties of incomplete-dimensional sets of Λ-
integrability.

Let L ⊂ E be a linear space. Let us introduce the following set of objects by induction.
Suppose that

S0 = ∅, L1 = E, Λ1 = Λ, S̃j = P (Λj), Sj = Sj−1 ∪ S̃j,

Lj+1 = aff convSj
L, Λj+1 = ΠLj+1

(Λ), j ∈ N.

Manifestly, the sets Sj are closed subsets of a unit sphere, and Lj are linear spaces, decreasing
in injection, j ∈ N. Therefore, one obtains the equality Lm = Lm+1 for a certain number m ∈ N.

The set Sm will be correlated to the equality L. Denote the set by T (L,Λ).
Note, that the sets S̃2, . . . , S̃m−1 are nonempty. Otherwise, the sequence would be already

stabilized.
Let us term the set of objects as a (Λ, L)-chain.
The (Λ, L)-chain is said to be exact if the

(
Λ, L̃

)
-chain for any linear subspace L̃ ⊂ L, L̃ 6= L

stabilizes on the linear space other than Lm.
Clearly, there is always a linear space L̃ ⊂ L such that the

(
Λ, L̃

)
-chain is exact and its last

linear space coincides with Lm.

Theorem 1. Let us assume that the integral (15) is determined on the set M ⊂ E, and the
linear space L ⊂ E is parallel to the space aff M .

Then, the integral exists on the set D = ri convSM , where S = T (L,Λ).

Proof. Without restriction of generality, one can consider the setM to be convex and 0 ∈ riM .
Evidently, the set D lies in the linear space Lm and by the statement 11, it is open in its

topology.
As it has been demonstrated, the integral (15) can be written for the points x ∈ Lm in the

form ∫
Λm

eλx dµm(λ), x ∈ Lm,

for a positive Radon measure µm on the set Λm.
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Thus, this is an integral in the Euclidean space Lm, determined on the set M ⊂ Lm. The
statement 16 entails that the integral is defined on the set ri convS̃m

M as well. However, the
set S̃m is involved in the set S by construction. Hence, the existence set of the integral includes
the set D.

Corollary. Let M ⊂ E be a set of Λ-integrability, the linear space L ⊂ E be parallel to the
space aff M , and the set S be equal to T (L,Λ).

Then, the set riM is weakly S-convex.

Indeed, the above proved theorem entails the injection

ri convSM ⊂M,

and the unknown quantity follows from Corollary 2 of Proposition 5.

Let us demonstrate now that any chain of spaces can occur in the above construction.

proposition 18. Let E = L1 ⊃ · · · ⊃ Lm ⊃ L be linear spaces, Lj 6= Lj+1, j = 1, . . . ,m− 1.
Then, there is a sequence Λ = {λn ∈ E : n ∈ N} tending to infinity such that the (Λ, L)-chain

is exact and its linear spaces coincide with the sequence {L1, . . . , Lm}.

Proof. Let us construct an orthonormal system of vectors

e1, . . . , ek1 , . . . , ekm−1 ∈ E,

for which the vectors e1, . . . , ek1 , . . . , ekj
make up the basis in the space L⊥j+1, j = 1, . . . ,m− 1,

and the sequence {sn ∈ L ∩ S : n ∈ N} is dense everywhere on the set L ∩ S.
Let us take the set

k1⋃
j1=1

k2⋃
j2=k1+1

· · ·
km−1⋃

jm−1=km−2−1

{
±nmej1 ± nm−1ej2± . . .

±n2ejm−1 ± nsn : n ∈ N
}

as a sequence of Λ.
As one can readily see, the set S1 = P (Λ) equals {±e1, . . . ,±ek1}. Let us demonstrate that

the equality
convS1L = L2

holds.
Indeed, for any vectors x ∈ E и x1, . . . , xk ∈ L, the conditions

sx 6 max
16j6k

sxj, s ∈ S1,

are obviously equivalent to the equalities e1x = 0, . . . , ek1x = 0, which is equivalent to the
injection x ∈ L2 in its turn.

Manifestly, the orthogonal projection of the sequence Λ onto the set L2 coincides with the
closed set

k2⋃
j2=k1+1

· · ·
km−1⋃

jm−1=km−2−1

{
±nm−1ej2 ± · · · ± n2ejm−1 ± nsn : n ∈ N

}
,

so that one has the equalities S2 = {±e1, . . . ,±ek1 , . . . ,±ek2} and convS2L = L3.
Finally, let us obtain

Sm−1 =
{
±e1, . . . ,±ek1 , . . . ,±ekm−1

}
,

convSm−1L = Lm, Sm = Sm−1 ∪ (L ∩ S) .

Demonstrate that convSmL = Lm.
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Evidently, the left-hand side of the relation is involved in the right-hand one. To prove the
converse, let us assume that the vector x ∈ Lm. In this case, there are elements x1 ∈ L and
y ∈ Lm ∩ L⊥ with the condition x = x1 + y. Moreover, the following relation holds:

sx = sx1, s ∈ Sm.
The desired injection is proved.

Let us assume now that L̃ ⊂ L is a linear eigensubspace. The beginning of the chain of linear
spaces for it coincides with such chain for the space L.

There is a vector x ∈ L with the conditions |x| = 1, x⊥L̃. Evidently, the relation x 6∈ convSmL̃
holds for it. This proves the theorem.

It follows from the above that relatively open and closed sets of Λ-integrability, whose affine
hull is parallel to the linear space L ⊂ E, are weakly S-convex, where S = T (L,Λ).

To prove the converse, several properties of exponential series and their coefficients will be
useful.

Lemma 5. Let us assume that the series (16) with non-negative coefficients converges
uniformly on the set M ⊂ E, and the common term of the series is unbounded on the compact
K ⊂ E.

Then, for any numbers N ∈ N and c, 0 < c < 1, there are numbers p, q ∈ N, N 6 p 6 q,
such that the equalities

max
x∈M

q∑
n=p

ane
λnx 6 c, min

x∈K
max
p6n6q

ane
λnx > c−1

hold.

Proof. The uniform convergence of the series (16) on the setM entails existence of the number
p ∈ N, p > N such that for any number m ∈ N, m > p the inequality

max
x∈M

m∑
n=p

ane
λnx 6 c

holds.
On the other hand, the following relation holds for any point x ∈ K:

are
λrx > c−1

for a certain number r ∈ N, r > p. Due to continuity, the inequality holds in the vicinity of the
point x. Taking into account that the set K is compact, one can readily prove that the number
q ∈ N exists with the necessary property.

Lemma 6. Let the set S of limit directions of the set Λ be nonempty.
Then, there is a sequence {λn ∈ Λ : n ∈ N} such that its set of limit directions coincides with

S and
∞∑
n=1

1

|λn|
<∞.

Proof. There is a sequence {sn ∈ S : n ∈ N}, with the set of terms dense everywhere on the
set S, where every term is repeated infinitely many times. By condition, one can find a point
λn ∈ Λ for any index n ∈ N such that the conditions∣∣∣∣ λn|λn| − sn

∣∣∣∣ 6 1

n
, |λn| > 2n

hold.
As one can readily demonstrate, the sequence {λn : n ∈ N} pertains the desired property.
Let us prove the result, illustrating that Theorem 1 is exact.
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proposition 19. Let us assume that a linear space L ⊂ E is parallel to the space aff M for
the convex compact M ⊂ E, and the set S equals T (L,Λ).

Then, there is a series (16), uniformly converging on the set M , and its common term is
unbounded outside the set convSM .

Proof. Obviously, one can assume without restriction of generality that 0 ∈M .
The sets S̃1, . . . , S̃m−1 are nonempty in the (Λ, L)-chain. To be specific, let the set S̃m 6= ∅

as well.
Applying Lemma 6, one finds the sequences Λj = {λjn ∈ Λ : n ∈ N} with the properties

P (Λj) = S̃j,

∞∑
n=1

1

|ΠLj
(λjn)|

<∞,

j = 1, . . . ,m. Generally speaking, these sets can have common terms.
Let us compose the subsequence Γ = {γn : n ∈ N} from various elements of the sequences

Λ1, . . . ,Λm.
Consider the following series:

∞∑
n=1

ajne
λj

nx, ajn =
e−H(ΠLj

(λj
n),M)∣∣ΠLj

(λjn)
∣∣ , j = 1, . . . ,m, n ∈ N. (21)

Since H(ΠLj
(λjn),M) = H(λjn,M) evidently, all the series converge uniformly on the set M .

Upon cancelling the terms, the sum of the series (21) is written in the form
∞∑
n=1

bne
γnx. (22)

Let us assume that terms of the series (22) are bounded at the point x ∈ E. Since terms of
the series (21) are positive, they are bounded as well by a number c > 0 at this point:

ajne
λj

nx 6 c, j = 1, . . . ,m, n ∈ N.

For any point s ∈ S̃1, there is a sequence
{
λ1
nk

: k ∈ N
}
, such that

lim
k→∞
|λ1
nk
| =∞, lim

k→∞

λ1
nk

|λ1
nk
|

= s.

Therefore,
− ln |λ1

nk
| −H(λ1

nk
,M) + λ1

nk
x 6 ln c, k ∈ N.

Whence, one readily obtains the inequality

sx 6 H(s,M). (23)

Proposition (9) entails the injection x ∈ convS̃1
M and hence, x ∈ L2. Manifestly, in this case

λ2
nx = ΠL2(λ

2
n)x, n ∈ N and moreover, H(λ2

n, K) = H(ΠL2(λ
2
n), K).

Repeating these considerations several times, one finally obtains the desired result.
Let us turn to the second main result of the present paper.

Theorem 2. Let us assume that the set M ⊂ E is convex, the linear space L ⊂ E is parallel
to the space aff M , and the set S equals to T (L,Λ). Furthermore, let the set M be weakly
S-convex and either closed or relatively open.

Then, there is a series (16), with the sets of absolute convergence and boundedness of the
common term coinciding with the set M .
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Proof. As usually, one can consider that 0 ∈ riM .
First, let us assume that the set M is closed.
The compacts Kr = {x ∈M : |x| 6 r} , r ∈ N, exhaust the set M , and their affine hull

coincides obviously with the linear space L. On the other hand, the compacts

Fr = {x ∈ E \M : |x| 6 r, ρ(x,M) > 1/r} , r ∈ N,

exhaust the compliment of the set M .
Evidently, the set Mr = convSKr lies inside the set M. Therefore, it does not intersect

with the set Fr, r ∈ N. In this case, applying the statement 19 and Lemma 5 sequentially,
one obtains the natural numbers p1, q1, p2, q2, . . . with the condition pr 6 qr < pr+1, and
apr , . . . , aqr > 0, r ∈ N for which the inequalities

max
x∈Kr

qr∑
n=pr

ane
λnx 6 2−r, min

x∈Fr

max
pr6n6qr

ane
λnx > 2r

hold.
Assuming that an = 0 for indices n = 1, . . . , p1 − 1 and qr < n < pr+1, r ∈ N, one obtains

the series (16) with the required properties.
Let us consider the case with respect to the open set M .
The set ∂ M = M \M is closed, because it is the boundary of the set M in the space L.

Therefore, adding the set {x ∈ ∂ M : |x| 6 r} , r ∈ N to the set Fr, one obtains the compacts
that exhaust the compliment of the set M .

The compacts

Kr =

{
x ∈ r

r + 1
M : |x| 6 r

}
, r ∈ N,

obviously exhaust the set M .
Invoking the statement 1, one can construct the required function similarly to the above.
The theorem is proved.
Corollary 1. Let us assume that the convex set M ⊂ E is closed, or relatively open, and it

is not a set of Λ-integrability.
Then, there is a point x ∈ E \M , where all integrals determined on the set M of the form

(15) are defined.

Indeed, let the linear space L ⊂ E be parallel to the space aff M , and the set S be equal to
T (L,Λ).

According to Theorem 1, any integral of the form (15), determined on the setM , is determined
on the set ri convSM . If the statement is not true, the injection ri convSM ⊂M should hold. In
this case, Corollary 2 of Proposition 5 entails that the set riM , and hence M as well, is weakly
Λ-convex. This leads to a contradiction and the theorem is proved.

Corollary 2. Let M be a subset of E and S = P (Λ).
In order for any set of Λ-integrability, containing the set M , to have a nonempty interior, it

is necessary and sufficient that the condition int convSM 6= ∅ hold.

Necessity. Let the linear space L ⊂ E be parallel to the space aff M , and the set S̃ be equal
to T (L,Λ). Applying the corollary of Theorem 1 and Theorem 2, one obtains that the set
D = convS̃M is a set of Λ-integrability, obviously containing the set M . In this case, the set
D is full-dimensional, and one can readily deduce from the definition of the set T (L,Λ) that
in this case, the equality T (L,Λ) = S holds. By the known properties of convex sets, the set
under consideration is nonempty.

Sufficiency follows from Proposition 16.

Let us prove the strengthened Theorem 2 for relatively open convex sets of a complex space.
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Let H be a finite-dimensional Hilbert space with the scalar product zw, z, w ∈ H. As it
has been mentioned, the space can be considered as a Euclidean space with the scalar product
Re zw, z, w ∈ H. Therefore, all the above results hold for it.

Let Λ be a closed subset of the space H. Consider series of the form
∞∑
n=1

ane
λnz, (24)

where z, λn ∈ Λ, an ∈ C, n ∈ N.

Theorem 3. Let the set U ⊂ H be convex and relatively open, the real linear space L ⊂ H
be parallel to the space aff U and the set S be equal to T (L,Λ). Furthermore, let the set U be
weakly S-convex.

Then, there is a series (24) with nonnegative coefficients whose sets of absolute convergence
and boundedness of the common term coincide with the set U , and the sum of the series f(z)
is unbounded at points of the relative boundary ∂ U of the set U :

lim
z→z0,z∈U

|f(z)| =∞, z0 ∈ ∂ U.

Proof. One can consider, that 0 ∈ riU .
Let Kn, n ∈ N be a sequence of compacts of the set U , the relative interior of which exhausts

the set, and the set of points
{sn ∈ S : n ∈ N}

be dense everywhere on the set {z/|z| : z ∈ ∂ U}.
Suppose that V1 = K1, M1 = convSV1. The closed set M1 lies inside the set U as stated

above. Therefore, there is a number t1 > 0, such that the point z1 = t1s1 belongs to the set
U \M1. Let us take the first set of Kj, j ∈ N, containing the point z1, as the set V2.

Likewise, find the sequence of compacts Vj and numbers tj > 0 with the property

zj ∈ Vj+1 \ convSVj,

where zj = tjsj, j ∈ N. Manifestly, these compacts exhaust the set U .
In the previous theorem, we constructed a series with nonnegative coefficients

∞∑
n=1

αne
λnz, λn ∈ Λ, (25)

with sets of absolute convergence and boundedness of the common term coinciding with the
set U . Let us denote the sum of the series by h(z).

Applying the statement 19 and Lemma 5, one sequentially finds the numbers βj > 0 and
points µj ∈ Λ, satisfying the inequalities

max
z∈Vj

|βjeµjz| 6 2−j, |βjeµjzj | > 2 + 2j +

∣∣∣∣∣h(zj) +

j−1∑
k=1

βke
µkzj

∣∣∣∣∣ ,
j ∈ N.

The series
∞∑
n=1

βne
µnz, (26)

converges absolutely on the set U . Let us demonstrate that the series obtained as a sum of the
latter series and the series (25) satisfies the required conditions upon cancelling the terms.

Indeed, coefficients of the series are nonnegative. Therefore, the common term of the resulting
series is unbounded outside the set U , and the inequalities |f(zj)| > 2j, j ∈ N hold for its sum
f(z).
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Let z0 be an arbitrary point of the set ∂ U and s = z0/|z0|. In this case, there is a sequence
of points {snk

: k ∈ N} converging to the point s and it remains only to prove that the relation
lim
k→∞

tnk
snk

= z0

holds.
Suppose this is not true. Then, there is a number ε > 0 and a subsequence {up : p ∈ N} of

the sequence {tnk
snk

: k ∈ N}, such that either the inequalities |up| > |z0| + ε, p ∈ N, or the
inequalities |up| 6 |z0| − ε, p ∈ N hold.

Let us consider the first case. The points
up
|up|

(|z0|+ ε) , p ∈ N,

obviously, belong to the set U and converge to the point z0 + εs. Thus, the point z0 lies on the
interval (0, z0 + εs), and the point z0 + εs lies inside the set U , which contradicts the relation
z0 6∈ U (see [7], p. 9).

In the second case, one can consider that the sequence {|up| : p ∈ N} converges to a number
t0 and therefore, the sequence {up : p ∈ N} converges to the point t0s. This point belongs to
the set U as stated above and hence, the set {up : p ∈ N}∪{t0s} lies compactly in U . However,
any compact of the set U falls within a certain compact Vj, j ∈ N, containing only a finite
number of points of the sequence {up : p ∈ N}.

The resulting contradiction proves the theorem.

5. Applications

The given section contains some properties of sets of Λ-integrability.

proposition 20. The following conditions are equivalent :
1. The set {0} is not a set of Λ-integrability.
2. The set Λ lies inside a half-space of the space E.
3. Any set of Λ-integrability is unbounded.

Proof. 1⇒ 2. The corollary of Theorem 2 entails that there is a vector x0 ∈ E, x0 6= 0 such
that any integral of the form (15), defined at zero, is defined at the point x0 as well. Let us
prove, that there is a number c ∈ R with the property

λx0 6 c, λ ∈ Λ. (27)
Indeed, otherwise, there is a sequence

{λn ∈ Λ : n ∈ N} ,
such that λnx0 > n2, n ∈ N. The series

∞∑
n=1

eλnx

λnx0

converges at zero but, evidently, diverges at the point x0, which proves the desired implication.
2 ⇒ 3. By condition, there is a vector x0 ∈ E, x0 6= 0 and a number c ∈ R such that the

inequality (27) holds for them. If an integral of the form (15) is determined at a point x1 ∈ E,
then the inequality ∫

Λ

eλ(x1+tx0) dµ(λ) 6 etc
∫

Λ

eλx1 dµ(λ), t > 0,

provides the validity of the second implication.
The last implication is manifest.

proposition 21. Any set of Λ-integrability has a nonempty interior if and only if the set Λ
lies inside a convex acute cone.
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Proof. Let
S = P (Λ), Kε = convSε, Uε = {tx : t > 0, x ∈ Kε} , ε > 0.

Manifestly, the set Uε is a closed convex cone with the vertex at zero.
Suppose that all sets of Λ-integrability have a nonempty interior. Then, one can readily

deduce the inequality int convS {0} 6= ∅ form Corollary 2 of Theorem 2.
Let us prove existence of the number ε > 0, for which the cone Uε is accute.
Indeed, otherwise, for any number ε > 0 there are various points αε, βε ∈ E, such that the

straight line {tαε + (1− t)βε : t ∈ R} lies inside the cone Uε. In this case, as one can readily
demonstrate, the vectors ±sε, where sε = (αε − βε)/|αε − βε|, belong to the cone Uε.

There are a sequence {εn} tending to zero and a vector s0 ∈ S such that sεn → s0. Manifestly,
±s0 ∈ U0.

One can readily demonstrate that the inequalities

sx 6 0, s ∈ V0

hold for the points x of the set convS {0} . Therefore, s0x = 0, which contradicts the nonempty
interior of the set.

Thus, there is a number ε > 0 with the required property. According to the statement 15,
there is a number R > 0 such that the set Λ is involved in the set {x ∈ E : |x| < R} ∪ Uε.
However, the cone Uε has a nonempty interior and if x0 ∈ intUε, then for some number t > 0
the cone −tx0 +Uε contains a solid sphere {x ∈ E : |x| < R} and the cone Uε. The first half of
the proposition is proved.

Conversely, let us assume that the injection Λ ⊂ α+ V holds for a convex acute closed cone
V ⊂ E with the vertex at zero and a vector α ∈ E. In this case, the set S, obviously lies in the
cone V .

Manifestly, it is sufficient to prove that the set convS {0} has a nonempty interior.
Suppose this is not true. Then, obviously, the latter set lies in a hyperplane passing through

the origin of coordinates, i.e. there is a vector α ∈ S such that the implication

sx 6 0, s ∈ S ⇒ αx = 0

holds. Using the Khan-Banach theorem, one can readily deduce the injection±α ∈ V. Therefore,
the cone V is not acute.

The statement is proved.

proposition 22. Let L ⊂ E be a linear subspace, {0} 6= L 6= E.
In order for any set of Λ-integrability, containing the vicinity of zero of the space L, to contain

the vicinity of zero for the space E, it is necessary and sufficient that the relations 0 6∈ ΠL(P (Λ))
hold.

Proof. Necessity. Suppose that M = B ∩ L, S = T (L,Λ). According to Theorem 1, the
set convSM is a set of Λ-integrability. Hence, it contains the solid sphere δB for a certain
number δ > 0. On the basis of definition of the set T (L,Λ), one concludes that the equality
T (L,Λ) = P (Λ) holds.

Manifestly, the relations

H(s,M) = H(ΠL(s),M) = |ΠL(s)|, s ∈ S

hold. Therefore, Proposition 9 provides

sx 6 |ΠL(s)|, |x| 6 δ, s ∈ S,

and, with the assumption that x = δs, the first half of the proposition is proved.
Since projection of a compact is a compact, the sufficiency is readily deduced from

Proposition 6.
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Corollary Let us assume that F is an irreducible polynomial of n variables over a field of
complex numbers, and its main part does not vanish on a real sphere.

Then, any function u ∈ C∞({x ∈ Rn : |x| < 1}), satisfying the equation

F

(
d

dx

)
u = 0,

is real analytic.

If we assume that Λ = {λ ∈ Cn : F (λ) = 0}, the set P (Λ) coincides with the set of zeroes of
the main part of the polynomial F on a complex unit sphere and the desired result is readily
deducible from results of the paper [8].

Let us consider now the Taylor type series in a finite-dimensional Hilbert space H.

proposition 23. Let us assume for the vectors α1, . . . , αl ∈ H that

V = {z ∈ H : Reαjz 6 0, j = 1, . . . , l} ,
and denote by Λ the set {

l∑
j=1

njαj : nj ∈ N0, j = 1, . . . , l

}
numbered somehow.

Then, series of the form (24) have the following properties.
1. The series (24), converging absolutely at the points z1, . . . , zk ∈ H, converges absolutely

and uniformly on the set conv {z1, . . . , zk}+ V .
2. Any set of absolute Λ-integrability M ⊂ H satisfies the equality M + V = M .
3. For a convex closed set M ⊂ H, M + V = M, there is a series of the from (24), with

thesets of absolute convergence and boundedness of the common term coinciding with the
set M .

4. For a convex relatively open set D ⊂ H, D + V = D, there is a series of the form (24),
absolutely converging on the set U , whose sum is unbounded at every point of the relative
boundary of the set.

Proof. Let us designate by S the set

S ∩

{
l∑

j=1

tjαj : tj > 0, j = 1, . . . , l

}
.

Manifestly, This is a closed set satisfying the injection P (Λ) ⊂ S. Let us demonstrate that the
reverse injection holds true as well.

Indeed, let the vector s =
∑l

j=1 tjαj, tj > 0 have a unit norm and, to be specific, t1 > 0.
There are sequences of natural number

{
mn
j : n ∈ N

}
j = 1, . . . , l, satisfying the relations

lim
n→∞

mn
1 =∞, lim

n→∞

mn
j

mn
1

=
tj
t1
, j = 2, . . . , l.

In this case,

lim
n→∞

∑l
j=1m

n
jαj∣∣∣∑l

j=1m
n
jαj

∣∣∣ = s,

and the equality

lim
n→∞

∣∣∣∑l
j=1m

n
jαj

∣∣∣
mn

1

=
1

t1



78 S.G. MERZLYAKOV

provides that

lim
n→∞

∣∣∣∣∣
l∑

j=1

mn
jαj

∣∣∣∣∣ =∞,

and hence, s ∈ P (Λ).
Note that the set S is spherically convex and the equality convS {0} = V holds. Therefore,

Proposition 12 entails the relation convSM = M + V for any convex set M ⊂ H.
The injections

λn
|λn|
∈ S, n ∈ N

are obvious and the first item follows from Lemma 4 and thus, entails the second item in its
turn.

Let us assume now that the condition M + V = M is satisfied for the convex set M ⊂ H,
and the linear space L ⊂ H is parallel to the space aff M . Since T (L,Λ) ⊃ P (Λ) = S, the
relation convT (L,Λ)M ⊂ convSM = M holds. Therefore, obviously, convT (L,Λ)M = M and the
remaining items follow from Theorems 2 and 3.

The statement is proved.
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