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NONISOMORPHIC LIE ALGEBRAS ADMITTED BY GAS
DYNAMICS MODELS

S.V. KHABIROV

Abstract. Group classification of gasdynamic equations with respect to the state equation
consists of 13 types of finite-dimensional Lie algebras of different dimensions, from 11 to
14. Some types depend on a parameter. Five pairs of Lie algebras appear to be equivalent.
The equivalent transformations for Lie algebras contain the equivalent transformations for
gasdynamic equations. The equivalence test resulted in nine nonisomorphic Lie algebras
with different structures. One type has 3 different structures for different parameters. Each
of these Lie algebras is represented as a semidirect sum of a six-dimensional Abeilian ideal
with a subalgebra, which is decomposed into a semidirect or direct sum in its turn. The
optimal systems for subalgebras are constructed. The Abeilian ideal is added in 6 cases
while constructing the optimal system. There remain 3 Lie algebras of the dimensions 12,
13, 15 for which the optimal systems are not constructed.
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Equations of gas dynamics are as follows

ρD~u+∇p = 0, Dρ+ ρ∇ · ~u = 0, Dp+ ρfρ∇ · ~u = 0, DS = 0 (1)

with the state equation in the general form p = f(ρ, S), D = ∂t+~u ·∇, ~u, p, ρ, S are velocity, pressure,
density, entropy.

Equivalence transformations of the system (1) leave the system (1) unaltered, but change the state
equation only:

p′ = g(ρ, p, S), ρ′ = h(ρ, p, S), S′ = k(ρ, p, S), p′ = f ′(ρ′, S′). (2)

Statement 1. Equivalence transformations of the system (1) have the form

p′ = ap+ b, ρ′ = aρ, S′ = K(S), f ′ (aρ,K(S)) = af(ρ, S) + b, (3)

where a, b are arbitrary constants, K(S) is an arbitrary function.

Proof. Let us substitute the expressions (2) into the system (1) with the variables p′, ρ′, S′. By
virtue of (1), one obtains the equalities

gρ = fρ
(
hρ−1 − gp

)
, gS = fS

(
hρ−1 − gp

)
,

kρ + fρkp = 0, hρ + fρhp = ρ−1h, g = f ′(h, k).

Solution of the equations has the form
k = K(I, S), g = pG1(I) +G2(I), h = ρG1(I), I = p− f(ρ, S),

f ′ (ρG1(I),K(I, S)) = (I + f(ρ, S))G1(I) +G2(I).

Assuming that I = 0, a = G1(0), b = G2(0), K(0, S) = K(S), one obtains the formulae (3).
The system (1) with an arbitrary state equation admits an 11-dimensional Lie algebra L11, with

the basis given by the following operators in the Cartesian system of coordinates: Xi = ∂xi , X3+i =
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t∂xi + ∂ui, X6+i = εkij

(
xj
xk

+ uj∂uk
)
, i = 1, 2, 3, X10 = ∂t, X11 = t∂t + xj∂xj . The algebra L11 is

expanded for special state equations [1]. Extensions with the accuracy up to the transformations (3)
are represented in the table, where Y0 = t∂t − ui∂ui , Yϕ(p) = ρϕ′(p)∂ρ + ϕ(p)∂p, ϕ, f are arbitrary
functions, γ, γ1 = 2γ(γ − 1)−1 are parameters, k is the dimension of the algebra.

№ p = f(ρ, S) k Auxiliary operators
1 f(ρ, S) 11 —
2 ργf(Sρ) 12 Y0 − (γ1 − 2)ρ∂ρ − γ1p∂p, γ1 6= 0, 2
3 ρf(Sρ) 12 Yp
4 f(Sρ) 12 Y0 + 2ρ∂ρ = X12

5 Sf(ρ) 12 Y0 + 2p∂p
6 Sργ 13 Yp, Y0 + 2ρ∂ρ
7 Sρ5/3 14 Yp, Y0 + 2ρ∂ρ, xiX3+i + t(Y0 − 3ρ∂ρ − 5p∂p) = Z
8 ln ρ+ f(ρS) 12 Y0 + 2ρ∂ρ + 2∂p
9 f(ρ) + S 12 Y1

10 ργ + S 13 Y1, Y0 − (γ1 − 2)ρ∂ρ − γ1p∂p, γ 6= 0,±1
11 ρ+ S 13 Y1, Yp
12 ln ρ+ S 13 Y1, Y0 + 2ρ∂ρ
13 S ∞ Yϕ(p), Y0 + 2ρ∂ρ

In order to construct different submodels of the system (3), it is necessary to enumerate nonsimilar
subalgebras of the Lie algebras from the table of expansions (optimal system). Subalgebras of
isomorphic Lie algebras are isomorphic. Therefore, first let us determine nonisomorphic algebras from
the tale of expansions.

Statement 2. [2]. Finite-dimensional subalgebras of the algebra L∞ = {Xϕ(p)} are similar to the
following {Y1}, {Y1, Yp}, {Y1, Yp, Yp2}.

Statement 3. Table of nonisomorphic finite-dimensional Lie algebras is as follows
Table 1.
f(ρ, S) L11

f(Sρ) {Y0 + 2ρ∂ρ}⊕̇L11

f(ρ) + S {Y1} ⊕ L11

Sργ {Yp, Y0 + 2ρ∂ρ}⊕̇L11

ργ + S {Y1, Y0 − (γ1 − 2)ρ∂ρ − γ1p∂p}⊕̇L11 = Mγ1, γ1 = 0,±1
ρ−1 + S {Y1, Y0 + ρ∂ρ − p∂p}⊕̇L11 = M1

ρ1/3 + S {Y1, Y0 + 3ρ∂ρ + p∂p}⊕̇L11 = M−1

ρ+ S {Y1, Yp} ⊕ L11

Sρ5/3 {X10, X11, Yp, Y0 + 2ρ∂ρ, Z}⊕̇L9 = L14

S {Y1, Yp, Yp2} ⊕ L12

Here L9, L11 are ideals, ⊕̇ is a semi-direct sum, ⊕ is a direct sum of ideals.

Proof. The Lie algebra N = 3′ with the auxiliary operator Yp′ = ρ′∂ρ′ + p′∂p′ for the state equation
p′ = ρ′f ′ (S′ρ′) is equivalent to the Lie algebra N = 9 with the auxiliary operator Y1 = ∂p for the
state equation with the pressure p = f(ρ) + S decomposed into the sum. This can be easily verified

by means of the substitution ρ =
p′

ρ′
, p = ln p′, S = − lnS′, f (f ′(τ)) = ln (τf ′(τ)). The substitution is

consistent with the state equation, but it changes the second equation of the system (1):

D ln ρ = D ln f ′(τ) = τf ′τ
(
f ′(τ)

)−1
D ln ρ′, τ = S′ρ′.

The Lie algebra N = 2′ with the auxiliary operator Y0− (γ1−2)ρ′∂ρ′−γ1p
′∂p′ for the state equation

p′ = ρ′γf ′ (S′ρ′) is equivalent to the Lie algebra N = 4 with the auxiliary operator Y0 + 2ρ∂ρ for the
state equation with the density p = f(Sρ) decomposed into a product. This can be verified by making
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the substitution ρ = ρ′
1−γ

2 , p = p′ρ′−γ , S = S′
1−γ

2 , f ′(τ) = f
(
τ

1−γ
2

)
. The substitution is consistent

with the state equation, but changes the second equation of the system (1) D ln ρ = 1−γ
2 D ln ρ′.

The Lie algebra N = 5′ with the auxiliary operator Y0 +2p′∂p′ for the state equation p′ = S′f ′(ρ′) is
equivalent to the Lie algebra N = 4 with the auxiliary operator Y0+2ρ∂ρ for the state equation with the
separated density p = f(Sρ). The substitution p = ρ′, ρ = p′, S = S′−1, f ′ (f(τ)) = τ is consistent with
the state equations, but it changes the second equation of the system (1) D ln ρ = τf ′τ (f(τ))−1D ln ρ′,
τ = ρ′.

The Lie algebra N = 8′ with the auxiliary operator Y0 + 2ρ′∂ρ′ + 2∂p′ for the state equation p′ =
ln ρ′+ f ′ (ρ′S′) is equivalent to the Lie algebra N = 4. The equivalence transformations are as follows:
p = p′ − ln ρ′, ρ = ρ′, S = S′, f(τ) = f ′(τ). The substitution is consistent with the state equations,
but it alters the first equation of the system ρ−1 5 p = ρ′−1 5 p′ − ρ′−2 5 ρ′.

The Lie algebra N = 12′ with the auxiliary operators Y1 = ∂p′ , Y0 + 2ρ′∂ρ′ for the state equation
p′ = ln ρ′ + S′ is equivalent to the Lie algebra N = 6 with the auxiliary operators Yp = ρ∂ρ + p∂p,
Y0 + 2ρ∂ρ for the state equation of a polytropic gas p = Sργ . The equivalence transformations have
the form p = ep

′ , ρ = ρ′ep
′ , S = e(1−γ)S

′ . The substitution is consistent with the state equations only
if γ = 1

2 and it alters only the second equation of the system (1) D ln ρ = 2D ln ρ′.
Other pairs of Lie algebras from the table of expansions are nonequivalent and nonisomorphic, as

one can see from the expansions of these algebras into semidirect and direct sums.
Systems of subalgebras for the algebras Mγ1 , γ1 6= ±1, M1, M−1 differ from each other [3].
In order to construct optimal systems of nonisomorphic finite-dimensional Lie algebras it is

convenient to expand them into semidirect sums, where one of the addends is the Abel ideal
J6 = {X1, . . . , X6} (J3 = {X7, X8, X9}):

L11 = (J3 ⊕ {X10, X11}) ⊕̇J6 [1],

{X12}⊕̇L11 =
(
J3 ⊕

(
{X10}⊕̇{X11, X12}

))
⊕̇J6 [4],

{Y1} ⊕ L11 =
(
J3 ⊕

(
{X10, X11} ⊕ {Y1}

))
⊕̇J6,

{Yp, X12}⊕̇L11 =
((

J3 ⊕
(
{X10}⊕̇{X11, X12}

))
⊕ {Yp}

)
⊕̇J6 [5],

Mγ1 =
((

J3 ⊕ {Y1, Y0 − (γ1 − 2)ρ∂ρ − γ1p∂p}
)
⊕̇{X10, X11}

)
⊕̇J6 [3],

{Y1, Yp} ⊕ L11 =
(
J3 ⊕ {X10, X11} ⊕ {Y1, Yp}

)
⊕̇J6,

L14 =
(
J3 ⊕ {X10, X11, X12, Z} ⊕ {Yp}

)
⊕̇J6 [6],

{Y1, Yp, Yp2} ⊕ L12 =
(
J3 ⊕

(
{X10}⊕̇{X11, X12}

)
⊕ {Y1, Yp, Yp2}

)
⊕̇J6.

Optimal systems are constructed for the Lie algebras with references. Optimal systems of subalgebras
that are complements to the Abel ideal J6 are presented in [2].

Thus, it remains to finish the construction of optimal systems for three expansions that are not
found in scientific literature.
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