ISSN 2074-1863  Ufa mathematical journal. Volume 3. Ne 2 (2011). Pp. 10{1§]

UDC 517.946

ABOUT THE CAMASSA-HOLM EQUATION
WITH A SELF-CONSISTENT SOURCE

I.I. BALTAEVA, G.U. URAZBOEV

Abstract. The paper is devoted to solving the Camassa-Holm equation with a self-
consistent source of a special type by the inverse scattering method. The main result consists
in determining the evolution of the scattering data for the spectral problem associated with
the Camassa-Holm equation with a self-consistent source of a special type. In contrast to
the classical Camassa-Holm equation, the eigenvalues of the spectral problem are moving
in the problem under consideration. The resulting equalities determine the evolution of the
scattering data completely; this fact allows us to apply the inverse scattering method for
solving the considered problem.

Keywords: the Camassa-Holm equation, inverse scattering problem, scattering data, Lax
pair, eigenvalue, eigenfunction.

1. INTRODUCTION

The system of equations

Ut — Ugqt + ZWU;U + 3UU$ - 2ua;uajac — UWlgry =
N
= > (Magrfu +2(m + w)(grfr)?),
k=1

Gkax = : +>\k(m+w) Gk,
frze = Z+)\k(m+w) fr, k=1,2,...,.N, © € R,

where u = u(x,t), m =u — uy,, w = const € R, is considered in the present paper.
Let us assume that the function u = u(x,t) is sufficiently smooth and is tending to its limits
rapidly enough when r — +o00, and

[ s <|u(:1:,t)] Y %D dz < 0. )

—0o0

In the problem under consideration, g, = gx(z,t) is an eigenfunction of the equation y,, =
(3 + A(m + w))y, and corresponds to the eigenvalue Ay, and fi = fi(x,t) is a solution to the
equation fi, = (}l + A(m 4 w)) fx linearly independent of g, and

W{gk,fk} Egkfléx_g;cxfk:wk(t)v k=1,2..N, (3)
where wy(t) are given functions of t.

Representations for solutions u(x,t), gp(z,t), fr(z,t), k=1,...,N of the problem (1) are
obtained in the present paper by means of the inverse problem method for the equation
Yer = (7 + A(m + w)y).

Note that the Camassa-Holm equation without a source was most completely solved by the
inverse scattering method in [1]. The works [2-3| illustrate that the Korteweg-de Vries (KdV)
equation with a self-consistent source can be solved by means of the inverse scattering method
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for the Sturm-Liouville operator. The sine-Gordon equation is solved with a self-consistent
source corresponding to moving eigenvalues of the Dirac operator in [4].

2. SCATTERING PROBLEM

Consider the equation

1
bue = (240 . )
where m = u — ug,, A(k) = —2(k* + 1), with the function u(z) , satisfying the condition
/((1 + |2 (fu(@)] + |uae () ) dz < oco. (5)

The present section contains information on the direct and inverse scattering problem for
the problem (4-5) necessary for our further exposition. Provided that the condition (5) is met,
Equation (4) possesses the Jost solutions with the following asymptotics:

U (z, k) = e~k 4 o(l), x— o0,
Yo(w, k) = ™ +0(1), x — +o0, (6)

o1(z, k) = e ™ 4 0(1), x — —o0,
ooz, k) = ™ +0(1), 2z — —o0. (7)

When k are real, the pairs {¢1, p2} and {11, } are pairs of linearly independent solutions for
Equation (4). Therefore,

One can readily see that
1
a(k) = —ﬂw{%(x, k), 1(x, k)}
The function a(k) admits an analytic continuation into the upper half-plane and has a finite

number of zeroes k = ik,, k, > 0. Meanwhile,

1 1
Ap = —— (—k§+—), n=12..,N
w 4

is an eigenvalue of Equation (4) so that
o1(x,iky,) = byha(x,ik,), n=1,2,...,N. (9)

Moreover, the following expansion on the half-plane I'mk > 0 takes place for the coefficient
a(k) :

N ) o
_ k—ik, 1 In(1 — |R(K")]?)
Ina(k) = —iak + ) In — — — / dk’,
; k+1ik, 2w

. kK —k
where -
az/( 1+@—1)d1‘, R(k):%.

The set {R(k), k € R, ky, by, n = 1,2,..., N} is called the scattering data for Equation
(4). The inverse scattering problem consists in recovering the function m(x), and consequently
u(z), of Equation (4) by the scattering data.
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The inverse problem of recovering the function u(x) by the scattering data is solved by means

of the following equations [1]:
x 2 iy . ) / N . 55_2k"_1x—in
Gten = (§5) [ g o 3 i)

ew) T
p=12..N,
Emﬂ@h(g%f+/memﬁmwwgﬁ%auzfﬁggﬁjﬁjhﬁ
e (E@NT T o e AR L bE(@) 2’%( ki)
et = (50) 4 [ R P I Yo
where N
&)—m@ﬁ/< ) + e )@}
U1(z, k) = U (2, k) [E ()™,
ﬁ(% k) = 901(1'7 k) exp{ik(m + / ( W - 1) dy)}>
Py = i) + RO, Rl
Note that the functions h,,, defined by the equalities
ho () = i (21 ;gﬁ;”kﬂkn, n=12 N, (10)

where @1, = 1(z,iky), V2, = o(z,ik,),n = 1,2,...,N are solutions to the equations

Pnze = (}l + Ap(m 4+ w))h,, and the asymptotics
hy, ~ —b,e ** when © — —o0, (11)
hy, ~ e **when = — 400

are true for them. According to (9), (6), (11), the equalities

W{Qol’m hn} = Qolnh;m - Spllnhn = anb’m

hold. In what follows, we will need the following lemma.
Lemma 1. If functions f and ¢ are solutions to equations

fx:r = (i—i_)\l(m—i_w)) f:

n=12..,N (12)

1
Gox = <Z + /\2(m+w>> g,

the following equality holds for them:

1 d
— — .
(m+w)fg = W01}

The lemma is proved by direct verification.
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Lemma 2. The following equality holds:

a(ik,) = i / (m + w)p1nande,
where a(ik,) = dc;(kk)|k:ikn, n=12,..N.
Proof. Differentiating the equations
sl ) = (4 AWNm(a) +) ) (),
() = (4 AR (2) +)) vl )
with respect to k, one obtains
al ) = (4 AWNm(a) +) ) i)+ AR (o) + ), )
() = (  ARIm(a) +0)) e ) + AR)ml) + ) ).

Then, one can readily conclude that
¢2¢1xm - 7/}23:96901 = _)\(k) (m(x) + w)ﬁpﬁﬁm

¢2Sblzx - szbel = A(k:)(m(x) + w)SOﬂ/)Q‘
These equalities provide

. , 2k, [
W{wZn: (pln} + W{w2m Spln} = - w /(m + W)wlanndm-

On the other hand, differentiating the equality

1
a<k) = _ﬂw{wQ(:Ev k)a Sol(xa k)}>
with respect to k, and substituting it instead of k = ik,,, one has

2kna(ikn) = W{@bzna Saln} + W{¢2n7 Sbln}-

Hence,
(0.)

a(ik,) = i /(m + w)p1pthande.

—00
Lemma 2 is proved.
3. EVOLUTION OF THE SCATTERING DATA

Let the function u(z,t) in (4) be a solution to the equation

Up — Uggt + 20U, + WU, — 2Uplpy — Ullgyy = G

where the function G = G(x,t) is sufficiently smooth and G(x,t) = o(1) when 2 — +o00,t > 0.

13

(13)

(14)

Lemma 3. If the function u(z,t) is a solution to Equation (14) in the class of functions (2)
then, the scattering data of the problem (4) with the function u(z,t) depend on ¢ as follows:

drR  dikw 4k* + 1

T g T GPde, (Imk =0
at k21 SikwaQ(kJ)/ prdz, (Imk =0),

—00
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db,  Awk 1—4k2 |
n _ n | Goph.d
a - 1—a2 T Rk, / P1nlinCT)

o0

dk 4k2 —1
"= z G dx.
dt  Swhnbnaliky) / Pinde
Proof. When k are real, we seek the Lax pair for Equation (14) in the form:
Prae = (1 4+ A(m +w))ep1, (15)
1 Uy
o1 = (ﬁ —U)¢1x+5¢1+7¢1+F($7k7t), (16)

where m(z) = u—ug,,a ¢1(z, k, t) are the Jost solutions of the equation 1., = (3 +A(m~+w))p;
with the asymptotics (7). Using the equality ¢1.2+ = @112, on the basis of the equalities (14),
(15), and (16), we obtain

1
Fow — <Z_l + A(m + w)> F = \Gy;. (17)
Let us find solution to this equation in the form

F(;U, k? t) = A(':C)Spl(xa ka t) + B(SL’)QD2(QZ, ka t)
Then, derive the system of equations

Amcpl + BmSOQ = 07 (18)
Az‘Plx + BxQDQx = )\Gspl

to determine A(z) and B(x). Using the asymptotics of the function ¢y (z, k,t) and (2), let us
pass to the limit in the equality (16) when x — —o0. The passage to the limit results in

F(z,t) — 0, when x — —o0.

Hence, solution of the system of equations (18) has the form:
- ik

—-— | G d — —
5 | Geredr + (55 =),

—00

Az) =

x

A
B(z) = %k / Gyldz.

—0o0

In this case, the second equation of the Lax pair has the form

1 g AL ik A
901t:(ﬁ_u)<ﬂ1x+3901+%01+ —ﬂ/G%%dI—F(ﬁ—V) 901-1-% Goldrpy. (19)

Passing to the limit x — oo in the equality (19) by virtue of (2), (6), (8), and substituting
v = %, one obtains

A AN [ o
a = —o Ggplapgd:m(k,t)#—ﬂ/Ggpldxb(k‘,t), (20)
ik A N[
bt—Xb(k,t)—ﬂ/Ggplgpgd:vb(k,t)jLﬂ/Ggpld:m(k:,t). (21)

—0 —00
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Multiply (21) by a and subtract from it the quality (20) ultiplied by 0. Then, using the
definition of the function R(k) and substituting A = —1(k? + 1), we obtain

dR 4ikw 4k* 4+ 1 )
Tt — d
dt 4k2 + 1R Sikwa?(k / Grde.

In the general case, eigenvalues of the equation y,, = (3 + A(m + w))y depend on time.
Therefore, differentiating the equalities

o1(x, ik, t) = by (t)he(x, ik, t), n=1,..., N, (22)

with respect to ¢, we obtain

D1 O d(ik,)  db, Moy Oty d(iky,)
ot ok it e L S T TS it dt )’
b 9 b d(iky) A
(pln _n Y R 2n
or — qpVe Wk = g+ b= (23)

according to the notation (10). Similarly to the case of the continuous spectrum, we seek the
Lax pair in case of the discreet spectrum in the following form:

Plnze = (1 + )\n(m + w))@lna (24)

Uy

1
Pint = (_ - u)@lnz + 9

2\
Then, we obtain the equation

1

to determine F,,(z,t). Let us solve (26) in the form
Fo(x,t) = Ay (z, 1)1, + Bu(z)hy,.

Likewise, in order to find A,(z,t) and B,(z,t), we obtain a system of equations resulting in

T

k.,
/Gsolnh ot (3 +7) |

21{:b

—00

2 dx

Bu(z) = 5,7

in case of the continuous spectrum as well. Thus, on the basis of (23), the second equation of
the Lax pair in this case has the form :

Pint = (ﬁ - U)Splnr + %Qoln + YPin — (Qk b f Ggolnh dr + ( + 7)) 301n+
(27)

] Geto,

an n
Passing to the limit in this equality when # — oo and using the asymptotics (2), (11), (22)
and (7), we obtain

o0 [e.9]

ky, - An ky, . An
_Kb T /Ggplnh dx + A b,e + — T /Ggplnd:pe

—00 —00
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= e — a(iky) T
Substituting A, = —1(—k2 + 1) and comparing coefficients of the exponents, we have

db,  Awk 142 |
— = - & hnd
a 1= Rk, / Grnhndr,

dk -1

L= G, da.
dt Swhnbyaliky) / PintE

Lemma 8 is proved.
Since the function h, is the solution to the equation h,., = (}l + Ap(m + w))h,, the

representation

B
hn:f n ntns :1,2,...,N
a(zkn) P1n T+ f n
holds for it. According to (11), we have a,, = W, where d,, is determined from the equality
9n = dn@ln'
Moreover, (3) provides that
ﬁnwn
hn7 nf — T /. 5 :1,2,...,N. 2
Wit f) = e n (28)
Let us apply the result of Lemma 3 when
N
G = Z(ngkfk +2(m + w)(grfi)z)-
k=1
Using Lemma 1 for k # n, one obtains
[ @ty - megfiddde = [ ((m+0)fian), - magefe)tyde+
2 [k Gk P1nPlng )dT = / (m + @) (grp1n(fre1n = Prnar) + P10 (GhePin — Plnagi))dr =
o (W W o £+ W W o)) e~
- )\k _ )\n dl’ Spln7gk‘ (;Olna k dx ‘;01n7 k (;Olnagk —
1 o0
= WH{o1n, e WH{e1n, fr} = = 0.
A — A\
According to (3), we have
/(2<<m + w)gnfn);c - mxgnfn)‘p%ndx = /(m + w)(gnsoln(@lnf;wz - fn90/1nx)+

(e 9]

+ fr1n (P1nGne — GnPlng))dT = / (M + W) g1 W{P1n, fnydr =

— 00
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o0 o0

= [+ ) W g S = [t )t e
By virtue of (13), the e_;Jation for k, in Lemma 3 can b_eoowritten in the form
thy 1, -
According to (3), the asymptotics
fo ~ 22::];” e when, x — oo, (30)
fr ~ —Jﬁe—k”x, when, z — —o0, (31)

hold for the functions f,(z,t). Here ¢, are determined from the equality g, = ¢,t9,. Using
Lemma 1 and the asymptotics (11), (30), (31) for k # n, we have

[e.e] (e}

+(m + w) frgePinhn| s — / (m + w) frgr(Prnhn)dx = / (m + w)(fre9kPrnhn + feGr©1nhn—
e (W W )+ 0 W ) e~
= M — A, dr Pin, Jk ny 9k dr ns 9k Pin, Jk =
1 o0
kE — \n
According to (28),
/(2((m + W) gnfn)y — MaGnfn)Prnhnds = /(m + W) (Gn@1n(ha frg — fuling)+
"’fnhn(@lng;m: - gnwﬁm))dl‘ = /(m + W)gnSpan{hm fn}dI =
ﬁnwn 7 2
p— d .

The last two equalities and the formula (13) provide

/ Goiphadr = iwlB,bywy,.
Hence,
db, 4wk, 1 —4k?

— = T ae —I—Z8T"ﬁnbnwn, n=12,.. N. (32)
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Likewise, using the definition of the Jost solutions, Lemma 1 and asymptotics (11), (30), (31),
one can demonstrate that

7 N 2 2
2., Wn, B ki —k
/ Gyidr = abw E i (1 Ea k2> :

n=1

dR 4k A2 41 = wy, k2 — k2
o S Y R. (33)
dt 4k? + 1 8k = kn k2 + k2
Let us join (29),(32) and (33) into the following statement.

Theorem. If the functions wu(z,t), gx(x,t), fr(z,t),k = 1,2,..., N are the solution to the

problem (1-3) then, the scattering data for Equation (4) with the function u(x,t) vary in ¢ as

follows:
dR dhw 4241 W, k2 — 2
e — “nfq_in R. (Imk=0
dt Z<4k2+1 8k an( k,%+k2)> . (Imk=0),

n=1

Therefore,

dk, 11— 4k
dt 8k,
db 4wk 1 — 4k?
— = " by + i———"Bbpwn, n=1,2, ...
B 1o iy, Onbnens n=12
The resulting equalities determine the evolution of the scattering data completely. This allows
us to apply the method of the inverse scattering problem to solve the problem (1 — 3).

Wna

N.
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