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ABOUT THE CAMASSA-HOLM EQUATION
WITH A SELF-CONSISTENT SOURCE

I.I. BALTAEVA, G.U. URAZBOEV

Abstract. The paper is devoted to solving the Camassa-Holm equation with a self-
consistent source of a special type by the inverse scattering method. The main result consists
in determining the evolution of the scattering data for the spectral problem associated with
the Camassa-Holm equation with a self-consistent source of a special type. In contrast to
the classical Camassa-Holm equation, the eigenvalues of the spectral problem are moving
in the problem under consideration. The resulting equalities determine the evolution of the
scattering data completely; this fact allows us to apply the inverse scattering method for
solving the considered problem.

Keywords: the Camassa-Holm equation, inverse scattering problem, scattering data, Lax
pair, eigenvalue, eigenfunction.

1. Introduction

The system of equations
ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx =

=
N∑
k=1

(mxgkfk + 2(m+ ω)(gkfk)
′
x),

gkxx =
(

1
4

+ λk(m+ ω)
)
gk,

fkxx =
(

1
4

+ λk(m+ ω)
)
fk, k = 1, 2, ..., N, x ∈ R,

(1)

where u = u(x, t), m = u− uxx, ω = const ∈ R, is considered in the present paper.
Let us assume that the function u = u(x, t) is sufficiently smooth and is tending to its limits

rapidly enough when x −→ ±∞, and
∞∫

−∞

(1 + |x|)

(
|u(x, t)|+

3∑
k=1

∣∣∣∣∂ku(x, t)∂xk

∣∣∣∣
)
dx <∞. (2)

In the problem under consideration, gk = gk(x, t) is an eigenfunction of the equation yxx =
(1

4
+ λ(m + ω))y, and corresponds to the eigenvalue λk, and fk = fk(x, t) is a solution to the

equation fkxx = (1
4

+ λk(m+ ω))fk linearly independent of gk, and

W{gk, fk} ≡ gkf
′
kx − g′kxfk = ωk(t), k = 1, 2, ..., N, (3)

where ωk(t) are given functions of t.
Representations for solutions u(x, t), gk(x, t), fk(x, t), k = 1, ..., N of the problem (1) are

obtained in the present paper by means of the inverse problem method for the equation
yxx = (1

4
+ λ(m+ ω)y).

Note that the Camassa-Holm equation without a source was most completely solved by the
inverse scattering method in [1]. The works [2-3] illustrate that the Korteweg-de Vries (KdV)
equation with a self-consistent source can be solved by means of the inverse scattering method
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for the Sturm-Liouville operator. The sine-Gordon equation is solved with a self-consistent
source corresponding to moving eigenvalues of the Dirac operator in [4].

2. Scattering problem

Consider the equation

ψxx =

(
1

4
+ λ(m+ ω)

)
ψ, (4)

where m = u− uxx, λ(k) = − 1
ω
(k2 + 1

4
), with the function u(x) , satisfying the condition

∞∫
−∞

((1 + |x|)(|u(x)|+ |uxx(x)|)dx <∞. (5)

The present section contains information on the direct and inverse scattering problem for
the problem (4-5) necessary for our further exposition. Provided that the condition (5) is met,
Equation (4) possesses the Jost solutions with the following asymptotics:

ψ1(x, k) = e−ikx + o(1), x −→ +∞,

ψ2(x, k) = eikx + o(1), x −→ +∞, (6)

ϕ1(x, k) = e−ikx + o(1), x −→ −∞,
ϕ2(x, k) = eikx + o(1), x −→ −∞. (7)

When k are real, the pairs {ϕ1, ϕ2} and {ψ1, ψ2} are pairs of linearly independent solutions for
Equation (4). Therefore,

ϕ1(x, k) = a(k)ψ1(x, k) + b(k)ψ2(x, k). (8)

One can readily see that

a(k) = − 1

2ik
W{ψ2(x, k), ϕ1(x, k)}.

The function a(k) admits an analytic continuation into the upper half-plane and has a finite
number of zeroes k = ikn, kn > 0. Meanwhile,

λn = − 1

ω

(
−k2

n +
1

4

)
, n = 1, 2, ..., N

is an eigenvalue of Equation (4) so that

ϕ1(x, ikn) = bnψ2(x, ikn), n = 1, 2, ..., N. (9)

Moreover, the following expansion on the half-plane Imk > 0 takes place for the coefficient
a(k) :

lna(k) = −iαk +
N∑
n=1

ln
k − ikn
k + ikn

− 1

2iπ

∞∫
−∞

ln(1− |R(k′)|2)
k′ − k

dk′,

where

α =

∞∫
−∞

(√
1 +

m(x)

ω
− 1

)
dx, R(k) =

b(k)

a(k
.

The set {R(k), k ∈ R, kn, bn, n = 1, 2, ..., N} is called the scattering data for Equation
(4). The inverse scattering problem consists in recovering the function m(x), and consequently
u(x), of Equation (4) by the scattering data.
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The inverse problem of recovering the function u(x) by the scattering data is solved by means
of the following equations [1]:

ψ1(x, k) =

(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′)[ξ(x)]2ik

′ dk′

k′ − k
+

N∑
n=1

bn[ξ(x)]
−2knψ1(x,−ikn)

ȧ(ikn)(k − ikn)
,

p = 1, 2, ..., N,

ψ1(x,−ikp) =

(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′)[ξ(x)]2ik

′ dk′

k′ + ikp
+ i

N∑
n=1

bn[ξ(x)]
−2knψ1(x,−ikn)

ȧ(ikn)(kp + kn)
,

e−
x
2 [ξ(x)]

1
2 =

(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′)[ξ(x)]2ik

′ dk′

k′ + i/2
+ i

N∑
n=1

bn[ξ(x)]
−2knψ1(x,−ikn)

ȧ(ikn)(kn + 1/2)
,

where

ξ(x) = exp{x+

x∫
∞

(√
m(y) + ω

ω
− 1

)
dy},

ψ1(x, k) ≡ ψ1(x, k)[ξ(x)]
ik,

ϕ1(x, k) ≡ ϕ1(x, k) exp{ik(x+

x∫
−∞

(√
m(y) + ω

ω
− 1

)
dy)},

ϕ1(x, k)

eiαka(k)
= ψ1(x, k) +R(k)ψ2(x, k)[ξ(x)]

2ik.

Note that the functions hn, defined by the equalities

hn(x) =
d
dk

(ϕ1 − bnψ2)|k=ikn

ȧ(ikn)
, n = 1, 2, ..., N, (10)

where ϕ1n = ϕ1(x, ikn), ψ2n = ψ2(x, ikn), n = 1, 2, ..., N are solutions to the equations
hnxx = (1

4
+ λn(m+ ω))hn, and the asymptotics

hn ∼ −bne−knx when x −→ −∞,
hn ∼ e−knx when x −→ +∞ (11)

are true for them. According to (9), (6), (11), the equalities

W{ϕ1n, hn} ≡ ϕ1nh
′
n − ϕ′1nhn = 2knbn, n = 1, 2, ..., N (12)

hold. In what follows, we will need the following lemma.
Lemma 1. If functions f and g are solutions to equations

fxx =

(
1

4
+ λ1(m+ ω)

)
f,

gxx =

(
1

4
+ λ2(m+ ω)

)
g,

the following equality holds for them:

(m+ ω)fg =
1

λ1 − λ2

d

dx
W{g, f}.

The lemma is proved by direct verification.
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Lemma 2. The following equality holds:

ȧ(ikn) =
1

iω

∞∫
−∞

(m+ ω)ϕ1nψ2ndx, (13)

where ȧ(ikn) = da(k)
dk
|k=ikn , n = 1, 2, ..., N.

Proof. Differentiating the equations

ϕ1xx(x, k) =

(
1

4
+ λ(k)(m(x) + ω)

)
ϕ1(x, k),

ψ2xx(x, k) =

(
1

4
+ λ(k)(m(x) + ω)

)
ψ2(x, k)

with respect to k, one obtains

ϕ̇1xx(x, k) =

(
1

4
+ λ(k)(m(x) + ω)

)
ϕ̇1(x, k) + λ̇(k)(m(x) + ω)ϕ1(x, k),

ψ̇2xx(x, k) =

(
1

4
+ λ(k)(m(x) + ω)

)
ψ̇2(x, k) + λ̇(k)(m(x) + ω)ψ2(x, k).

Then, one can readily conclude that

ψ̇2ϕ1xx − ψ̇2xxϕ1 = −λ̇(k)(m(x) + ω)ϕ1ψ2,

ψ2ϕ̇1xx − ψ2xxϕ̇1 = λ̇(k)(m(x) + ω)ϕ1ψ2.

These equalities provide

W{ψ̇2n, ϕ1n}+W{ψ2n, ϕ̇1n} = −2ikn
ω

∞∫
−∞

(m+ ω)ϕ1nψ2ndx.

On the other hand, differentiating the equality

a(k) = − 1

2ik
W{ψ2(x, k), ϕ1(x, k)},

with respect to k, and substituting it instead of k = ikn, one has

2knȧ(ikn) = W{ψ̇2n, ϕ1n}+W{ψ2n, ϕ̇1n}.
Hence,

ȧ(ikn) =
1

iω

∞∫
−∞

(m+ ω)ϕ1nψ2ndx.

Lemma 2 is proved.

3. Evolution of the scattering data

Let the function u(x, t) in (4) be a solution to the equation

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = G, (14)

where the function G = G(x, t) is sufficiently smooth and G(x, t) = o(1) when x→ ±∞, t ≥ 0.
Lemma 3. If the function u(x, t) is a solution to Equation (14) in the class of functions (2)

then, the scattering data of the problem (4) with the function u(x, t) depend on t as follows:

dR

dt
= − 4ikω

4k2 + 1
R− 4k2 + 1

8ikωa2(k)

∞∫
−∞

Gϕ2
1dx, (Imk = 0),
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dbn
dt

=
4ωkn

1− 4k2
n

bn +
1− 4k2

n

8ωkn

∞∫
−∞

Gϕ1nhndx,

dkn
dt

= i
4k2

n − 1

8ωknbnȧ(ikn)

∞∫
−∞

Gϕ2
1ndx.

Proof. When k are real, we seek the Lax pair for Equation (14) in the form:

ϕ1xx = (1 + λ(m+ ω))ϕ1, (15)

ϕ1t = (
1

2λ
− u)ϕ1x +

ux
2
ϕ1 + γϕ1 + F (x, k, t), (16)

where m(x) = u−uxx,а ϕ1(x, k, t) are the Jost solutions of the equation ϕ1xx = (1
4
+λ(m+ω))ϕ1

with the asymptotics (7). Using the equality ϕ1xxt = ϕ1txx, on the basis of the equalities (14),
(15), and (16), we obtain

Fxx −
(

1

4
+ λ(m+ ω)

)
F = λGϕ1. (17)

Let us find solution to this equation in the form

F (x, k, t) = A(x)ϕ1(x, k, t) +B(x)ϕ2(x, k, t).

Then, derive the system of equations{
Axϕ1 +Bxϕ2 = 0,
Axϕ1x +Bxϕ2x = λGϕ1

(18)

to determine A(x) and B(x). Using the asymptotics of the function ϕ1(x, k, t) and (2), let us
pass to the limit in the equality (16) when x −→ −∞. The passage to the limit results in

F (x, t) −→ 0, when x −→ −∞.
Hence, solution of the system of equations (18) has the form:

A(x) = − λ

2ik

x∫
−∞

Gϕ1ϕ2dx+ (
ik

2λ
− γ),

B(x) =
λ

2ik

x∫
−∞

Gϕ2
1dx.

In this case, the second equation of the Lax pair has the form

ϕ1t = (
1

2λ
−u)ϕ1x+

ux
2
ϕ1+γϕ1+

− λ

2ik

x∫
−∞

Gϕ1ϕ2dx+ (
ik

2λ
− γ)

ϕ1+
λ

2ik

x∫
−∞

Gϕ2
1dxϕ2. (19)

Passing to the limit x −→ ∞ in the equality (19) by virtue of (2), (6), (8), and substituting
γ = ik

2λ
, one obtains

at = − λ

2ik

∞∫
−∞

Gϕ1ϕ2dxa(k, t) +
λ

2ik

∞∫
−∞

Gϕ2
1dxb(k, t), (20)

bt =
ik

λ
b(k, t)− λ

2ik

∞∫
−∞

Gϕ1ϕ2dxb(k, t) +
λ

2ik

∞∫
−∞

Gϕ2
1dxa(k, t). (21)
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Multiply (21) by a and subtract from it the quality (20) multiplied by b. Then, using the
definition of the function R(k) and substituting λ = − 1

ω
(k2 + 1

4
), we obtain

dR

dt
= − 4ikω

4k2 + 1
R− 4k2 + 1

8ikωa2(k)

∞∫
−∞

Gϕ2
1dx.

In the general case, eigenvalues of the equation yxx = (1
4

+ λ(m + ω))y depend on time.
Therefore, differentiating the equalities

ϕ1(x, ikn, t) = bn(t)ψ2(x, ikn, t), n = 1, ..., N, (22)

with respect to t, we obtain
∂ϕ1n

∂t
+
∂ϕ1

∂k
|k=ikn

d(ikn)

dt
=
dbn
dt
ψ2n + bn

(
∂ψ2n

∂t
+
∂ψ2

∂k
|k=ikn

d(ikn)

dt

)
,

i.e.
∂ϕ1n

∂t
=
bn
dt
ψ2n − ȧ(ikn)hn

d(ikn)

dt
+ bn

∂ψ2n

∂t
(23)

according to the notation (10). Similarly to the case of the continuous spectrum, we seek the
Lax pair in case of the discreet spectrum in the following form:

ϕ1nxx = (1 + λn(m+ ω))ϕ1n, (24)

ϕ1nt = (
1

2λ
− u)ϕ1nx +

ux
2
ϕ1n + γϕ1n + Fn. (25)

Then, we obtain the equation

Fnxx − (
1

4
+ λn(m+ ω))Fn = λGϕ1n (26)

to determine Fn(x, t). Let us solve (26) in the form

Fn(x, t) = An(x, t)ϕ1n +Bn(x)hn.

Likewise, in order to find An(x, t) and Bn(x, t), we obtain a system of equations resulting in

An(x, t) = −

 λn
2knbn

x∫
−∞

Gϕ1nhndx+ (
kn
2λn

+ γ)

 ,

Bn(x) =
λn

2knbn

x∫
−∞

Gϕ2
1ndx

in case of the continuous spectrum as well. Thus, on the basis of (23), the second equation of
the Lax pair in this case has the form :

ϕ1nt = ( 1
2λn
− u)ϕ1nx + ux

2
ϕ1n + γϕ1n −

(
λn

2knbn

x∫
−∞

Gϕ1nhndx+ ( kn

2λn
+ γ)

)
ϕ1n+

λn

2knbn

x∫
−∞

Gϕ2
1ndxhn.

(27)

Passing to the limit in this equality when x −→ ∞ and using the asymptotics (2), (11), (22)
and (7), we obtain

− kn
2λn

bne
−knx −

 λn
2knbn

∞∫
−∞

Gϕ1nhndx+
kn
2λn

 bne
−knx +

λn
2knbn

∞∫
−∞

Gϕ2
1ndxe

knx =
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=
dbn
dt
e−knx − ȧ(ikn)

d(ikn)

dt
eknx.

Substituting λn = − 1
ω
(−k2

n + 1
4
) and comparing coefficients of the exponents, we have

dbn
dt

=
4ωkn

1− 4k2
n

bn +
1− 4k2

n

8ωkn

∞∫
−∞

Gϕ1nhndx,

dkn
dt

= i
4k2

n − 1

8ωknbnȧ(ikn)

∞∫
−∞

Gϕ2
1ndx.

Lemma 3 is proved.
Since the function hn is the solution to the equation hnxx = (1

4
+ λn(m + ω))hn, the

representation

hn =
βn

ȧ(ikn)
ϕ1n + αnfn, n = 1, 2, ..., N

holds for it. According to (11), we have αn = 2knbndn

ωn
, where dn is determined from the equality

gn = dnϕ1n.
Moreover, (3) provides that

W{hn, fn} =
βnωn

ȧ(ikn)dn
, n = 1, 2, ..., N. (28)

Let us apply the result of Lemma 3 when

G =
N∑
k=1

(mxgkfk + 2(m+ ω)(gkfk)
′
x).

Using Lemma 1 for k 6= n, one obtains
∞∫

−∞

(2((m+ ω)fkgk)
′
x −mxgkfk)ϕ

2
1ndx =

∞∫
−∞

(((m+ ω)fkgk)
′
x −mxgkfk)ϕ

2
1ndx+

+(m+ ω)fkgkϕ
2
1n|∞−∞ −

∞∫
−∞

(m+ ω)fkgk(ϕ
2
1n)
′
xdx =

∞∫
−∞

(m+ ω)(f ′kxgkϕ
2
1n + fkg

′
kxϕ

2
1n−

−2fkgkϕ1nϕ
′
1nx)dx =

∞∫
−∞

(m+ ω)(gkϕ1n(f
′
kxϕ1n − ϕ′1nxfk) + fkϕ1n(g

′
kxϕ1n − ϕ′1nxgk))dx =

=
1

λk − λn

∞∫
−∞

(
d

dx
W{ϕ1n, gk}W{ϕ1n, fk}+

d

dx
W{ϕ1n, fk}W{ϕ1n, gk}

)
dx =

=
1

λk − λn
W{ϕ1n, gk}W{ϕ1n, fk}|∞−∞ = 0.

According to (3), we have
∞∫

−∞

(2((m+ ω)gnfn)
′
x −mxgnfn)ϕ

2
1ndx =

∞∫
−∞

(m+ ω)(gnϕ1n(ϕ1nf
′
nx − fnϕ′1nx)+

+fnϕ1n(ϕ1ng
′
nx − gnϕ′1nx))dx =

∞∫
−∞

(m+ ω)gnϕ1nW{ϕ1n, fn}dx =



ABOUT THE CAMASSA-HOLM EQUATION WITH A SELF-CONSISTENT SOURCE 17

=

∞∫
−∞

(m+ ω)ϕ2
1nW{gn, fn}dx = ωn

∞∫
−∞

(m+ ω)ϕ2
1ndx.

By virtue of (13), the equation for kn in Lemma 3 can be written in the form

dkn
dt

=
1− 4k2

n

8kn
ωn. (29)

According to (3), the asymptotics

fn ∼
ωn

2cnkn
eknx, when, x −→∞, (30)

fn ∼ −
ωn

2dnkn
e−knx, when, x −→ −∞, (31)

hold for the functions fn(x, t). Here cn are determined from the equality gn = cnψ2n. Using
Lemma 1 and the asymptotics (11), (30), (31) for k 6= n, we have

∞∫
−∞

(2((m+ ω)fkgk)
′
x −mxgkfk)ϕ1nhndx =

∞∫
−∞

(((m+ ω)fkgk)
′
x −mxgkfk)ϕ1nhndx+

+(m+ ω)fkgkϕ1nhn|∞−∞ −
∞∫

−∞

(m+ ω)fkgk(ϕ1nhn)
′
xdx =

∞∫
−∞

(m+ ω)(f ′kxgkϕ1nhn + fkg
′
kxϕ1nhn−

−fkgkϕ1nh
′
nx−fkgkϕ′1nxhn)dx =

∞∫
−∞

(m+ω)(fkϕ1n(g
′
kxhn−h′nxgk)+gkhn(f ′kxϕ1n−ϕ′1nxfk))dx =

=
1

λk − λn

∞∫
−∞

(
d

dx
W{ϕ1n, fk}W{hn, gk}+

d

dx
W{hn, gk}W{ϕ1n, fk}

)
dx =

=
1

λk − λn
W{ϕ1n, fk}W{hn, gk}|∞−∞ = 0.

According to (28),
∞∫

−∞

(2((m+ ω)gnfn)
′
x −mxgnfn)ϕ1nhndx =

∞∫
−∞

(m+ ω)(gnϕ1n(hnf
′
nx − fnh′nx)+

+fnhn(ϕ1ng
′
nx − gnϕ′1nx))dx =

∞∫
−∞

(m+ ω)gnϕ1nW{hn, fn}dx =

=
βnωn
ȧ(ikn)

∞∫
−∞

(m+ ω)ϕ2
1ndx.

The last two equalities and the formula (13) provide
∞∫

−∞

Gϕ1nhndx = iωβnbnωn.

Hence,
dbn
dt

=
4ωkn

1− 4k2
n

bn + i
1− 4k2

n

8kn
βnbnωn, n = 1, 2, ..., N. (32)
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Likewise, using the definition of the Jost solutions, Lemma 1 and asymptotics (11), (30), (31),
one can demonstrate that

∞∫
−∞

Gϕ2
1dx = abω

N∑
n=1

ωn
kn

(
1− k2

n − k2

k2
n + k2

)
.

Therefore,
dR

dt
= −i

(
4kω

4k2 + 1
− 4k2 + 1

8k

N∑
n=1

ωn
kn

(
1− k2

n − k2

k2
n + k2

))
R. (33)

Let us join (29),(32) and (33) into the following statement.
Theorem. If the functions u(x, t), gk(x, t), fk(x, t), k = 1, 2, ..., N are the solution to the

problem (1-3) then, the scattering data for Equation (4) with the function u(x, t) vary in t as
follows:

dR

dt
= −i

(
4kω

4k2 + 1
− 4k2 + 1

8k

N∑
n=1

ωn
kn

(
1− k2

n − k2

k2
n + k2

))
R, (Imk = 0),

dkn
dt

=
1− 4k2

n

8kn
ωn,

dbn
dt

=
4ωkn

1− 4k2
n

bn + i
1− 4k2

n

8kn
βnbnωn, n = 1, 2, ..., N.

The resulting equalities determine the evolution of the scattering data completely. This allows
us to apply the method of the inverse scattering problem to solve the problem (1− 3).
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