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REALIZATION OF HOMOGENEOUS

TRIEBEL-LIZORKIN SPACES WITH 𝑝 = ∞
AND CHARACTERIZATIONS VIA DIFFERENCES

M. BENALLIA, M. MOUSSAI

Abstract. In this paper, via the decomposition of Littlewood-Paley, the homogeneous
Triebel-Lizorkin space �̇� 𝑠

∞,𝑞 is defined on R𝑛 by distributions modulo polynomials in the

sense that ‖𝑓‖ = 0 (‖ · ‖ the quasi-seminorm in �̇� 𝑠
∞,𝑞) if and only if 𝑓 is a polynomial on

R𝑛. We consider this space as a set of “true” distributions and we are lead to examine the
convergence of the Littlewood-Paley sequence of each element in �̇� 𝑠

∞,𝑞. First we use the

realizations and then we obtain the realized space ̃̇︀𝐹 𝑠
∞,𝑞 of �̇� 𝑠

∞,𝑞.
Our approach is as follows. We first study the commuting translations and dilations of

realizations in �̇� 𝑠
∞,𝑞, and employing distributions vanishing at infinity in the weak sense, we

construct ̃̇︀𝐹 𝑠
∞,𝑞. Then, as another possible definition of �̇� 𝑠

∞,𝑞, in the case 𝑠 > 0, we make

use of the differences and describe ̃̇︀𝐹 𝑠
∞,𝑞 as 𝑠 > max(𝑛/𝑞 − 𝑛, 0).
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1. Introduction

In this paper we study a realization of homogeneous Triebel-Lizorkin spaces �̇� 𝑠
∞,𝑞 on R

𝑛. The

spaces �̇� 𝑠
∞,𝑞 are defined by distributions modulo polynomials in the sense that ‖𝑓‖�̇� 𝑠

∞,𝑞
= 0 if

and only if 𝑓 is a polynomial on R𝑛. Some of their properties can be found in [12], [22].
The basic definition of �̇� 𝑠

∞,𝑞 is given via the Littlewood-Paley decomposition (abbreviated as
LP decomposition). To recall this, we introduce some notations.
By 𝜌 we denote an infinitely differentiable radial function obeying the estimates 0 6 𝜌 6 1

such that

𝜌(𝜉) = 1 as |𝜉| 6 1, 𝜌(𝜉) = 0 as |𝜉| > 3

2
.

We denote 𝛾(𝜉) := 𝜌(𝜉)− 𝜌(2𝜉). This function is supported in the annulus 1
2
6 |𝜉| 6 3

2
, and

𝛾(𝜉) = 1 as
3

4
6 |𝜉| 6 1,

∑︁
𝑗∈Z

𝛾(2𝑗𝜉) = 1 as 𝜉 ̸= 0.

For 𝑚 ∈ N, the symbol 𝒫𝑚 stands for the set of all polynomials on R𝑛 of degree less than 𝑚
obeying 𝒫0 = {0}. By 𝒫∞ we denote the set of all polynomials. For 𝑚 ∈ N0 ∪ {∞}, the set
𝒮 ′
𝑚 of the tempered distributions modulo polynomials is the dual space of 𝒮𝑚, which is the

orthogonal space of 𝒫𝑚 in 𝒮, that is, 𝒮𝑚 is the set of all 𝑓 ∈ 𝒮 such that ⟨𝑢, 𝑓⟩ = 0 for all
𝑢 ∈ 𝒫𝑚. For a tempered distributions 𝑓 ∈ 𝒮 ′, the symbol [𝑓 ]𝑚 denotes the equivalence class of
𝑓 modulo 𝒫𝑚.
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We define the operators 𝑄𝑗 by the formulâ︂𝑄𝑗𝑓 := 𝛾(2−𝑗(·)) ̂︀𝑓, 𝑗 ∈ Z.

These operators are defined on 𝒮 ′ as well as on 𝒮 ′
𝑚 since 𝑄𝑗𝑓 = 0 if and only if 𝑓 ∈ 𝒫𝑚.

For instance, we have 𝑄𝑗(𝒮) ⊂ 𝒮∞. All these operators take values in the space of analytical
functions of exponential type, see the Paley-Wiener theorem. Finally, we adopt the following
convention: for 𝑓 ∈ 𝒮 ′

𝑚, we define 𝑄𝑗𝑓 := 𝑄𝑗𝑓1 for all 𝑓1 ∈ 𝒮 ′ such that [𝑓1]𝑚 = 𝑓 .
We turn to the LP decomposition; for all 𝑓 ∈ 𝒮∞ (or 𝒮 ′

∞) the identity

𝑓 =
∑︁
𝑗∈Z

𝑄𝑗𝑓 in 𝒮∞ (or 𝒮 ′
∞) (1)

holds; this is an easy application of Lemma 7 below. However, once we work in �̇� 𝑠
∞,𝑞, it is

possible to obtain the convergence of the series of the LP decomposition in 𝒮 ′
𝜇 for some integer

𝜇, see (7) below. This leads us to the need to realize �̇� 𝑠
∞,𝑞 and to obtain the realized spaces

by using the notion of realization. For a quasi-Banach distribution space 𝐸 →˓ 𝒮 ′
∞, we need

to find a continuous linear mapping 𝜎 : 𝐸 → 𝒮 ′
𝑚 such that [𝜎(𝑓)]𝑚 coincides with 𝑓 modulo

polynomials in 𝒫𝑚 for all 𝑓 ∈ 𝐸, cf. Definition 4 below. If in addition, 𝐸 is a translation or a
dilation invariant, that is,

‖𝜏𝑎𝑓‖𝐸 = ‖𝑓‖𝐸 or ‖ℎ𝜆𝑓‖𝐸 = 𝜆𝑟‖𝑓‖𝐸
with 𝑟 ∈ R, where 𝜏𝑎𝑓(𝑥) := 𝑓(𝑥 − 𝑎) and ℎ𝜆𝑓(𝑥) := 𝑓(𝑥/𝜆) for all 𝑥, 𝑎 ∈ R𝑛 and all 𝜆 > 0,
the existence of a such 𝜎 commuting with translation or dilation operators, that is, obeying

𝜏𝑎 ∘ 𝜎 = 𝜎 ∘ 𝜏𝑎 or ℎ𝜆 ∘ 𝜎 = 𝜎 ∘ ℎ𝜆,

is nontrivial.
We note that the realizations have been introduced by G. Bourdaud [3] for the homogeneous

Besov spaces �̇�𝑠
𝑝,𝑞; the corresponding integer 𝜇 was defined in [7]. In the same way, we know

the realizations of both the homogeneous Triebel-Lizorkin spaces �̇� 𝑠
𝑝,𝑞 with 𝑝 < ∞ and the

homogeneous Sobolev spaces �̇�𝑚
𝑝 , and some of their properties, see, for instance, [2], [5], [6],

[7], [16], [21]. Also, nowadays there are various papers presenting applications of the realizations
to Navier-Stokes equations, pseudodifferential operators, wavelet, etc., see, for instance, [9], [15],
[20] and in particular, a comment in [1].
On the other hand, the distributions vanishing at infinity play an important role to

characterize such realization. We recall this notion.

Definition 1. We say that a distribution 𝑓 ∈ 𝒮 ′ vanishes at infinity if

lim
𝜆→0

ℎ𝜆𝑓 = 0 in 𝒮 ′.

The set of all such distributions is denoted by ̃︀𝐶0.

For instance, we have 𝑓 ∈ ̃︀𝐶0 if 𝑓 ∈ 𝐿𝑝 (1 6 𝑝 < ∞). If either 𝑓 ∈ 𝐿∞ or 𝑓 ∈ ̃︀𝐶0 then

𝜕𝑗𝑓 ∈ ̃︀𝐶0 (𝑗 = 1, . . . , 𝑛). An easy statement is given by identity ̃︀𝐶0 ∩ 𝒫∞ = {0} (see, for
instance, [3]).
As usually, N stands for the natural numbers {1, 2, . . .} and N0 := N ∪ {0}. All function

spaces occurring in the paper are defined in the Euclidean space R𝑛. By ‖ · ‖𝑝 we denote the
𝐿𝑝 quasi-norm for 0 < 𝑝 6 ∞. For 𝑠 ∈ R, the symbol [𝑠] denotes the integer part of 𝑠. For all
𝑚 ∈ N0, the standard norms in 𝒮 are given by

𝜁𝑚(𝑓) := sup
𝑥∈R𝑛

sup
|𝛼|6𝑚

(1 + |𝑥|)𝑚 |𝑓 (𝛼)(𝑥)|.
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The Fourier transform for a function 𝑓 ∈ 𝐿1 is defined as

ℱ𝑓(𝜉) = ̂︀𝑓(𝜉) := ∫︁
R𝑛

e−i𝑥·𝜉𝑓(𝑥) 𝑑𝑥, 𝜉 ∈ R𝑛.

The operator ℱ can be extended to the whole 𝒮 ′ in the usual way. In the same way we define
the inverse Fourier transform ℱ−1,

ℱ−1𝑓(𝑥) := (2𝜋)−𝑛 ̂︀𝑓(−𝑥).

For an arbitrary function 𝑓 , we define the difference operators as

Δℎ𝑓 = Δ1
ℎ𝑓 := 𝜏−ℎ𝑓 − 𝑓, Δ𝑚

ℎ 𝑓 := Δℎ(Δ
𝑚−1
ℎ 𝑓), ℎ ∈ R𝑛, 𝑚 = 2, 3, . . .

The constants 𝑐, 𝑐1, . . . are strictly positive and depend only on the fixed parameters as 𝑛, 𝑠,
𝑞 and probably on auxiliary functions, their values may vary from line to line. The notation
𝐴 . 𝐵 means that 𝐴 6 𝑐𝐵. The symbol 𝐸 →˓ 𝐹 denotes that we have the embedding 𝐸 ⊆ 𝐹
and the natural mapping 𝐸 → 𝐹 is continuous. Throughout the paper, the real numbers 𝑠, 𝑞
satisfy as 𝑠 ∈ R and 0 < 𝑞 6 ∞ unless otherwise is stated.
The paper is organized as follows. In Section 2 we recall the definitions and some properties

of homogeneous Triebel-Lizorkin spaces �̇� 𝑠
∞,𝑞 and of inhomogeneous ones 𝐹 𝑠

∞,𝑞. Section 3 is

devoted to the realizations of �̇� 𝑠
∞,𝑞. In Section 4, by means of the differences, we characterize

the realized spaces of �̇� 𝑠
∞,𝑞 in the case 𝑠 > max(𝑛/𝑞 − 𝑛, 0).

2. Preliminaries

2.1. Homogeneous spaces �̇� 𝑠
∞,𝑞. By 𝑃𝑘,𝜈 (𝑘 ∈ Z, 𝜈 ∈ Z𝑛) we denote the dyadic cube with

side length 2−𝑘, left lower corner in the point 2−𝑘𝜈 and sides parallel to the coordinate axes,
that is,

𝑃𝑘,𝜈 :=
{︀
𝑥 ∈ R𝑛 : 2−𝑘𝜈𝑗 6 𝑥𝑗 < 2−𝑘(𝜈𝑗 + 1), 𝑗 = 1, 2, . . . , 𝑛

}︀
.

The definition of �̇� 𝑠
∞,𝑞 was given by Frazier and Jawerth [12] as follows.

Definition 2. Let 𝑞 ∈]0,∞[. The space �̇� 𝑠
∞,𝑞 is the set of 𝑓 ∈ 𝒮 ′

∞ such that

‖𝑓‖�̇� 𝑠
∞,𝑞

:= sup
𝑘∈Z

sup
𝜈∈Z𝑛

(︁
2𝑘𝑛

∫︁
𝑃𝑘,𝜈

∑︁
𝑗>𝑘

2𝑗𝑠𝑞|𝑄𝑗𝑓(𝑥)|𝑞𝑑𝑥
)︁1/𝑞

< ∞.

Remark 1. For 𝑞 = ∞, the set �̇� 𝑠
∞,∞ coincides with the Hölder space �̇�𝑠

∞,∞, see [14, Eq.
(1.3)] and Lemma 3 below. We let

‖𝑓‖�̇� 𝑠
∞,∞

:= sup
𝑗∈Z

2𝑗𝑠‖𝑄𝑗𝑓‖∞ < ∞.

The space �̇� 𝑠
∞,𝑞 becomes a quasi-Banach with the above defined quasi-seminorm. On the one

hand, its definition is independent of the choice of 𝛾, see [12, Cor. 5.3]. On the other hand, by
(1) and Lemma 7 below, we have 𝒮∞ →˓ �̇� 𝑠

∞,𝑞 →˓ 𝒮 ′
∞. We also have the following statements.

Lemma 1. There exist two constants 𝑐1, 𝑐2 > 0 such that the inequalities

𝑐1‖𝑓‖�̇� 𝑠
∞,𝑞

6 𝜆𝑠‖ℎ𝜆𝑓‖�̇� 𝑠
∞,𝑞

6 𝑐2‖𝑓‖�̇� 𝑠
∞,𝑞

(2)

holds for all 𝑓 ∈ �̇� 𝑠
∞,𝑞 and all 𝜆 > 0.

Proof. At the first step, we prove (2) with 𝜆 := 2𝑁 , 𝑁 ∈ Z. Here by using the identity

𝑄𝑗(ℎ2𝑁𝑓) = 𝑄𝑗+𝑁𝑓(2
−𝑁(·)),

we obtain easily that
‖ℎ2𝑁𝑓‖�̇� 𝑠

∞,𝑞
= 2−𝑁𝑠‖𝑓‖�̇� 𝑠

∞,𝑞
.
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In the case of arbitrary 𝜆 > 0, we introduce an integer 𝑁 ∈ Z such that 2𝑁 6 𝜆 < 2𝑁+1.
Then we use the equivalent quasi-seminorm in �̇� 𝑠

∞,𝑞 defined by the function 𝛾1 := 𝛾
(︀
2𝑁𝜆−1 ·

)︀
and we get

‖𝑓(𝜆 ·)‖�̇� 𝑠
∞,𝑞

= 2𝑁𝑠‖𝑓
(︀
2−𝑁𝜆 ·

)︀
‖�̇� 𝑠

∞,𝑞
.

Then it is not difficult to prove that

𝑐1‖𝑓‖�̇� 𝑠
∞,𝑞

6 ‖𝑓
(︀
2−𝑁𝜆 ·

)︀
‖�̇� 𝑠

∞,𝑞
6 𝑐2‖𝑓‖�̇� 𝑠

∞,𝑞

for some positive constants 𝑐1 and 𝑐2 independent of 𝑁 , 𝜆 and 𝑓 . This completes the proof.

The next lemma was proved in [11].

Lemma 2. There exists a constant 𝑐 > 0 such that

sup
𝑥∈𝑃𝑗,𝜈

|𝜙(𝑥)| 6 𝑐2𝑗𝑛/𝑞 sup
𝜂∈Z𝑛

‖𝜙‖𝐿𝑞(𝑃𝑗,𝜂) (3)

holds for all 𝑗 ∈ Z, 𝜈 ∈ Z𝑛, and 𝜙 ∈ 𝒮 ′ with supp ̂︀𝜙 ⊂ {𝜉 ∈ R𝑛 : |𝜉| 6 2𝑗+1}.

Lemma 3. For all 𝑞 > 0 we have �̇� 𝑠
∞,𝑞 →˓ �̇� 𝑠

∞,∞ = �̇�𝑠
∞,∞.

Proof. The identity is known, see, for instance, [12] and here we provide a proof of the embed-
ding for more clarity.

Let 𝑓 ∈ �̇� 𝑠
∞,𝑞. By Lemma 2 we have

|𝑄𝑗𝑓(𝑥)|𝑞 6 𝑐12
𝑗𝑛 sup

𝜂∈Z𝑛

∫︁
𝑃𝑗,𝜂

|𝑄𝑗𝑓(𝑦)|𝑞 𝑑𝑦 for all 𝑥 ∈ 𝑃𝑗,𝜈 ,

which is bounded by

𝑐12
−𝑗𝑠𝑞2𝑗𝑛 sup

𝜂∈Z𝑛

∫︁
𝑃𝑗,𝜂

∑︁
𝑙>𝑗

2𝑙𝑠𝑞|𝑄𝑙𝑓(𝑦)|𝑞𝑑𝑦,

where the constant 𝑐1 is independent of 𝑓 , 𝑗 and 𝜈. This inequality implies that

|𝑄𝑗𝑓(𝑥)| . 2−𝑗𝑠‖𝑓‖�̇� 𝑠
∞,𝑞

(∀𝑥 ∈ 𝑃𝑗,𝜈).

Then we get

‖𝑓‖�̇� 𝑠
∞,∞

= sup
𝜂∈Z𝑛

sup
𝑘>𝑗

sup
𝑧∈𝑃𝑗,𝜂

2𝑘𝑠|𝑄𝑘𝑓(𝑧)| . ‖𝑓‖�̇� 𝑠
∞,𝑞

.

The proof is complete.

Remark 2. An inequality opposite to (3) can be easily proved, and for this, the assumption
supp ̂︀𝜙 ⊂ {𝜉 ∈ R𝑛 : |𝜉| 6 2𝑗+1} is not needed.

Remark 3. In case 1 < 𝑞 < ∞, the space �̇� 𝑠
∞,𝑞 has another definition introduced by Triebel

[19], which is compatible with the one of Frazier and Jawerth, see a comment in [12].

2.2. Inhomogeneous spaces 𝐹 𝑠
∞,𝑞. For each 𝑓 ∈ 𝒮 (or 𝑓 ∈ 𝒮 ′), we use the inhomogeneous

LP decomposition 𝑓 = ℱ−1𝜌 * 𝑓 +
∑︀

𝑗>0𝑄𝑗𝑓 in 𝒮 (or 𝒮 ′) and we obtain the inhomogeneous

Triebel-Lizorkin spaces 𝐹 𝑠
∞,𝑞 as introduced in [12].

Definition 3. The space 𝐹 𝑠
∞,𝑞 is the set of 𝑓 ∈ 𝒮 ′ such that

‖𝑓‖𝐹 𝑠
∞,𝑞

:= ‖ℱ−1𝜌 * 𝑓‖∞ + sup
𝑘∈N

sup
𝜈∈Z𝑛

(︁
2𝑘𝑛

∫︁
𝑃𝑘,𝜈

∑︁
𝑗>𝑘

2𝑗𝑠𝑞|𝑄𝑗𝑓(𝑥)|𝑞𝑑𝑥
)︁1/𝑞

< ∞.
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Also as above,

‖𝑓‖𝐹 𝑠
∞,∞ = ‖𝑓‖𝐵𝑠

∞,∞ := ‖ℱ−1𝜌 * 𝑓‖∞ + sup
𝑗>0

2𝑗𝑠‖𝑄𝑗𝑓‖∞ < ∞,

cf. Lemma 3 and see also [19, Sect. 2.3.4, Rem. 3].
For some properties of 𝐹 𝑠

∞,𝑞, we refer to [12]. The case 𝑠 > 0 is related with the case of the
homogeneous space.

Lemma 4. Let 𝑠 > 0. Then
(i) 𝐹 𝑠

∞,𝑞 →˓ 𝐿∞,

(ii) 𝐹 𝑠
∞,𝑞 is the set of 𝑓 ∈ 𝐿∞ such that [𝑓 ]∞ ∈ �̇� 𝑠

∞,𝑞. The expression ‖𝑓‖∞ + ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

is

an equivalent quasi-norm in 𝐹 𝑠
∞,𝑞.

Proof. Proof of (i). This embedding can be found in [22], see in particular, Statement (iii) in
Propositions 2.4 and Proposition 2.6 in the cited work as well as Remark 8 below.

Proof of (ii). Let 𝑓 ∈ 𝐿∞ be such that [𝑓 ]∞ ∈ �̇� 𝑠
∞,𝑞. Thanks to the convolution inequality

‖ℱ−1𝜌 * 𝑓‖∞ 6 ‖ℱ−1𝜌‖1‖𝑓‖∞,

we have

‖𝑓‖𝐹 𝑠
∞,𝑞

. ‖𝑓‖∞ + ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

.

For the opposite inequality, let 𝑓 ∈ 𝐹 𝑠
∞,𝑞. By (i), we first have ‖𝑓‖∞ . ‖𝑓‖𝐹 𝑠

∞,𝑞
. Then for all

𝑘 6 0 and all 𝜈 ∈ Z𝑛, we obtain

2𝑘𝑛
∫︁

𝑃𝑘,𝜈

∑︁
𝑗>𝑘

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥 =2𝑘𝑛
∫︁

𝑃𝑘,𝜈

(︁ ∑︁
𝑘6𝑗60

+
∑︁
𝑗>1

)︁
2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥

.‖𝑓‖𝑞∞
∑︁
𝑗60

2𝑗𝑠𝑞 + 2𝑘𝑛
∫︁

𝑃𝑘,𝜈

∑︁
𝑗>1

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥.
(4)

On the one hand, denoting by 𝐸(𝑥) the vector ([𝑥1], . . . , [𝑥𝑛]) ∈ Z𝑛 for 𝑥 ∈ R𝑛, we get an
elementary inequality

[21−𝑘𝜈𝑗] 6 2𝑥𝑗 < [21−𝑘𝜈𝑗] + 1 + 21−𝑘, 𝑥 ∈ 𝑃𝑘,𝜈 , 𝑘 6 0, 𝑗 = 1, . . . , 𝑛,

and this yields

𝑥 ∈ 𝑃𝑘,𝜈 ⇒ 𝑥 ∈
1+21−𝑘⋃︁
𝑟=0

𝑃1,𝐸(21−𝑘𝜈)+𝑟𝑤0
,

where 𝑤0 := (1, 1, . . . , 1) ∈ Z𝑛. We then obtain∫︁
𝑃𝑘,𝜈

∑︁
𝑗>1

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥 6
1+21−𝑘∑︁
𝑟=0

∫︁
𝑃
1,𝐸(21−𝑘𝜈)+𝑟𝑤0

∑︁
𝑗>1

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥

6(2 + 21−𝑘) sup
𝜂∈Z𝑛

∫︁
𝑃1,𝜂

∑︁
𝑗>1

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥

6(2 + 21−𝑘) sup
𝑟∈N

sup
𝜂∈Z𝑛

2𝑟𝑛
∫︁

𝑃𝑟,𝜂

∑︁
𝑗>𝑟

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥

6(2 + 21−𝑘)‖𝑓‖𝑞𝐹 𝑠
∞,𝑞

.
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Finally, by inserting this inequality into (4), and taking into account that 2𝑘𝑛(2+21−𝑘) 6 4 for
𝑘 6 0, we get

2𝑘𝑛
∫︁

𝑃𝑘,𝜈

∑︁
𝑗>𝑘

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥 . ‖𝑓‖𝑞∞ + ‖𝑓‖𝑞𝐹 𝑠
∞,𝑞

. ‖𝑓‖𝑞𝐹 𝑠
∞,𝑞

, 𝑘 6 0. (5)

On the other hand, clearly for all 𝑘 ∈ N,

2𝑘𝑛
∫︁

𝑃𝑘,𝜈

∑︁
𝑗>𝑘

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥 6 sup
𝑟∈N

2𝑟𝑛
∫︁

𝑃𝑟,𝜈

∑︁
𝑗>𝑟

2𝑗𝑠𝑞|𝑄𝑗𝑓 |𝑞𝑑𝑥 6 ‖𝑓‖𝑞𝐹 𝑠
∞,𝑞

.

Then this estimate and (5) yield the desired result. The proof is complete.

The space 𝐹 𝑠
∞,𝑞 can be described via differences. We recall the following statement.

Lemma 5. Let 𝑚 ∈ N be such that

max (𝑛/𝑞 − 𝑛, 0) < 𝑠 < 𝑚 . (6)

Then

(i) A function 𝑓 belongs to 𝐹 𝑠
∞,𝑞 if and only if 𝑓 ∈ 𝐿∞ and

𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓) := sup

𝑘∈N0,𝜈∈Z𝑛

(︁
2𝑘𝑛

21−𝑘∫︁
0

𝑡−𝑠𝑞 sup
𝑡/26|ℎ|<𝑡

∫︁
𝑃𝑘,𝜈

|Δ𝑚
ℎ 𝑓(𝑥)|𝑞 𝑑𝑥

𝑑𝑡

𝑡

)︁ 1
𝑞
< ∞ .

Moreover, the expression ‖𝑓‖∞ +𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓) is an equivalent quasi-seminorm in 𝐹 𝑠

∞,𝑞.

(ii) The same conclusion holds by replacing in (i) the term 𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓) by

𝒩 𝑠,𝑚,2
∞,𝑞 (𝑓) := sup

𝑘∈N0,𝜈∈Z𝑛

(︁
2𝑘𝑛

21−𝑘∫︁
0

𝑡−𝑠𝑞

∫︁
𝑃𝑘,𝜈

(︁
𝑡−𝑛

∫︁
𝑡/26|ℎ|<𝑡

|Δ𝑚
ℎ 𝑓(𝑥)|𝑑ℎ

)︁𝑞

𝑑𝑥
𝑑𝑡

𝑡

)︁ 1
𝑞
,

or

𝒩 𝑠,𝑚,3
∞,𝑞 (𝑓) := sup

𝑘∈N0,𝜈∈Z𝑛

(︁
2𝑘𝑛

21−𝑘∫︁
0

𝑡−𝑠𝑞

∫︁
𝑃𝑘,𝜈

𝑡−𝑛

∫︁
𝑡/26|ℎ|<𝑡

|Δ𝑚
ℎ 𝑓(𝑥)|𝑞 𝑑ℎ𝑑𝑥

𝑑𝑡

𝑡

)︁ 1
𝑞
.

Proof. We refer to [22, Rem. 4.8] if 0 < 𝑞 < ∞, and to [22, Cor. 4.3] as 𝑞 = ∞, in which the
statement was proved for the Besov-type spaces 𝐵𝑠,𝜏

∞,∞, but 𝐵𝑠,0
∞,∞ = 𝐵𝑠

∞,∞.

2.3. Definition of realizations.

Definition 4. Let 𝑚 ∈ N0 ∪ {∞} and 𝑘 ∈ {0, . . . ,𝑚}. Let 𝐸 be a vector subspace of 𝒮 ′
𝑚

endowed with a quasi-norm such that the continuous embedding 𝐸 →˓ 𝒮 ′
𝑚 holds. A realization

of 𝐸 into 𝒮 ′
𝑘 is a continuous linear mapping 𝜎 : 𝐸 → 𝒮 ′

𝑘 such that [𝜎(𝑓)]𝑚 = 𝑓 for all 𝑓 ∈ 𝐸.
The image set 𝜎(𝐸) is called the realized space of 𝐸 with respect to 𝜎.

Remark 4. In case 𝑘 = 𝑚 the identity is the unique realization.

If a realization is known, then it generates other realizations. We recall the following state-
ment, see [6, Prop. 1].

Lemma 6. Let 𝜎0 : 𝐸 → 𝒮 ′
𝑘 be a realization. For all finite families (ℒ𝛼)𝑘6|𝛼|6𝑁 of continuous

linear functionals on 𝐸, the following formula defines a realization of 𝐸 in 𝒮 ′
𝑘:

𝜎(𝑓)(𝑥) := 𝜎0(𝑓)(𝑥) +
∑︁

𝑘6|𝛼|6𝑁

ℒ𝛼(𝑓)𝑥
𝛼 (𝑚𝑜𝑑𝑢𝑙𝑜 𝒫𝑘) .

And vice versa, each realization of 𝐸 modulo 𝒫𝑘 is given in such a way.
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3. Realizations of �̇� 𝑠
∞,𝑞

In what follows, to any space �̇� 𝑠
∞,𝑞, we associate a number 𝜇 ∈ N0 defined by:

𝜇 := max(0, [𝑠] + 1). (7)

We shall employ the following lemma, a classical consequence of Taylor formula, see, for
instance, [16, Prop. 2.5].

Lemma 7. Let 0 < 𝑝 6 ∞ and 𝑁 ∈ N0. There exist 𝑐1, 𝑐2 > 0 and 𝑚1,𝑚2 ∈ N0 such that
(i) ‖𝑄𝑗𝜙‖𝑝 6 𝑐12

−𝑗𝑁𝜁𝑚1(ℱ−1𝛾)𝜁𝑚1(𝜙) for all 𝜙 ∈ 𝒮 and all 𝑗 ∈ N0.
(ii) ‖𝑄𝑗𝜙‖𝑝 6 𝑐22

𝑗𝑁𝜁𝑚2(ℱ−1𝛾)𝜁𝑚2(𝜙) for all 𝜙 ∈ 𝒮𝑁 and all 𝑗 ∈ Z ∖N.

Our main aim is to prove the following result.

Theorem 1. Let 𝑓 ∈ �̇� 𝑠
∞,𝑞. Then the series

∑︀
𝑗∈Z𝑄𝑗𝑓 converges in 𝒮 ′

𝜇. Let us define 𝜎(𝑓)

as the its sum belonging to 𝒮 ′
𝜇. Then the mapping 𝜎 : �̇� 𝑠

∞,𝑞 → 𝒮 ′
𝜇 is a translation and a dilation

commuting realization of �̇� 𝑠
∞,𝑞 into 𝒮 ′

𝜇. The element 𝜎(𝑓) is the unique representative of 𝑓 in

𝒮 ′
𝜇 satisfying [𝜎(𝑓)]∞ = 𝑓 in 𝒮 ′

∞ and 𝜕𝛼𝜎(𝑓) ∈ ̃︀𝐶0 for all |𝛼| = 𝜇. Moreover,

‖[𝜎(𝑓)]∞‖�̇� 𝑠
∞,𝑞

= ‖𝑓‖�̇� 𝑠
∞,𝑞

.

Proof. Step 1. Let 𝑓 ∈ �̇� 𝑠
∞,𝑞. We introduce a radial and positive function ̃︀𝛾 ∈ 𝒟(R𝑛∖{0}) such

that 𝛾̃︀𝛾 = 𝛾. Then we define a sequence of operators ( ̃︀𝑄𝑗) as (𝑄𝑗) by taking ̃︀𝛾 instead of 𝛾.
Let 𝑔 ∈ 𝒮𝜇. We begin with the inequality

|⟨𝑄𝑗𝑓, ̃︀𝑄𝑗𝑔⟩| 6 2𝑗𝑠‖𝑄𝑗𝑓‖∞(2−𝑗𝑠‖ ̃︀𝑄𝑗𝑔‖1).

Then by Lemma 7 with 𝑝 = 1, 𝜙 := 𝑔 and an arbitrary 𝑁 and �̇� 𝑠
∞,𝑞 →˓ �̇�𝑠

∞,∞ we get:

|⟨𝑄𝑗𝑓, ̃︀𝑄𝑗𝑔⟩| . 2−𝑗𝑠min(2−𝑗𝑁 , 2𝑗𝜇)𝜁𝑚(𝑔)‖𝑓‖�̇� 𝑠
∞,𝑞

, 𝑗 ∈ Z, (8)

where an integer 𝑚 depends only on 𝑁 and 𝜇. We choose 𝑁 such that 𝑁 + 𝑠 > 0, and by the

definition of 𝜇 we have 𝜇− 𝑠 > 0. Then by the identity ⟨𝑄𝑗𝑓, 𝑔⟩ = ⟨𝑄𝑗𝑓, ̃︀𝑄𝑗𝑔⟩ we get∑︁
𝑗∈Z

|⟨𝑄𝑗𝑓, 𝑔⟩| . 𝜁𝑚(𝑔)‖𝑓‖�̇� 𝑠
∞,𝑞

. (9)

Step 2. Inequality (9) yields

sup
𝑔∈𝒮𝜇, 𝜁𝑚(𝑔)61

|⟨𝜎(𝑓), 𝑔⟩| . ‖𝑓‖�̇� 𝑠
∞,𝑞

for all 𝑓 ∈ �̇� 𝑠
∞,𝑞. Then 𝜎 is a realization of �̇� 𝑠

∞,𝑞 into 𝒮 ′
𝜇.

Step 3. The identity [𝜎(𝑓)]∞ = 𝑓 in 𝒮 ′
∞ is implied by (1).

Step 4. Let |𝛼| = 𝜇, 𝜆 > 0 and 𝑔 ∈ 𝒮. We introduce an integer 𝑟 such that 2−𝑟−1 < 𝜆 6 2−𝑟.
Then suppℱ

(︀
ℎ𝜆(𝑄𝑗−𝑟𝑓

(𝛼))
)︀
is contained in the annulus 2𝑗−1 6 |𝜉| 6 3 · 2𝑗, and

ℱ
(︀
𝑄𝑘ℎ𝜆(𝑄𝑗−𝑟𝑓

(𝛼))
)︀
= 0 as 𝑘 − 𝑗 > 3 or 𝑘 − 𝑗 6 −2.

Hence,

⟨ℎ𝜆(𝑄𝑗−𝑟𝑓
(𝛼)), 𝑔⟩ =

3∑︁
𝑘=−2

⟨ℎ𝜆(𝑄𝑗−𝑟𝑓
(𝛼)), 𝑄𝑗+𝑘𝑔⟩.

By Bernstein inequality we have

‖ℎ𝜆(𝑄𝑗−𝑟𝑓
(𝛼))‖∞ . 2(𝑗−𝑟)|𝛼|‖𝑄𝑗−𝑟𝑓‖∞ . 2𝑗(𝜇−𝑠)𝜆𝜇−𝑠‖𝑓‖�̇�𝑠

∞,∞
,
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on the one hand. On the other hand, by Lemma 7(i) and the fact that ‖𝑄𝑗+𝑘𝑔‖1 . ‖𝑔‖1, for
some 𝑁 ∈ N0 and 𝑚 := 𝑚(𝑁) ∈ N0 we have

|⟨ℎ𝜆 (𝜕
𝛼𝜎(𝑓)) , 𝑔⟩| . 𝜆𝜇−𝑠‖𝑓‖�̇� 𝑠

∞,𝑞

(︁
𝜁𝑚(𝑔)

∑︁
𝑗>0

2𝑗(𝜇−𝑠−𝑁) + ‖𝑔‖1
∑︁
𝑗<0

2𝑗(𝜇−𝑠)
)︁
.

Choosing 𝑁 such that 𝑁 + 𝑠− 𝜇 > 0, and taking into account that 𝜇− 𝑠 > 0 for all 𝑠 ∈ R, we
pass to limit as 𝜆 tends to 0 and arrive at 𝜕𝛼𝜎(𝑓) ∈ ̃︀𝐶0.

Step 5. Let 𝑓𝑖 ∈ 𝒮 ′
𝜇, 𝑖 = 1, 2, satisfy the identity [𝑓1]∞ = [𝑓2]∞ = 𝑓 and 𝜕𝛼𝑓𝑖 ∈ ̃︀𝐶0 for all

|𝛼| = 𝜇. Then

𝑓1 − 𝑓2 ∈ 𝒫∞ and 𝜕𝛼(𝑓1 − 𝑓2) ∈ ̃︀𝐶0 ∩ 𝒫∞ = {0} for all |𝛼| > 𝜇.

Hence, 𝑓1 − 𝑓2 ∈ 𝒫𝜇.
Step 6. Since each operator 𝑄𝑗 commutes with the mapping 𝜏𝑎 for all 𝑎 ∈ R𝑛, the realization

𝜎 commutes also with 𝜏𝑎.
Let 𝜆 > 0. Since �̇� 𝑠

∞,𝑞 is dilation invariant, that is, ℎ𝜆𝑓 ∈ �̇� 𝑠
∞,𝑞, see Lemma 1, it follows that

𝜎(ℎ𝜆𝑓) =
∑︀

𝑗∈Z𝑄𝑗(ℎ𝜆𝑓) ∈ 𝒮 ′
𝜇. We define the operators 𝑄𝑗,𝜆 as 𝑄𝑗 replacing 𝛾 by ℎ𝜆𝛾. It is

easy to see that 𝑄𝑗(ℎ𝜆𝑓) = ℎ𝜆𝑄𝑗,𝜆𝑓 in 𝒮 ′ since 𝑄𝑗𝜙(𝜆(·)) = 𝑄𝑗,𝜆(ℎ𝜆−1𝜙) for all 𝜙 ∈ 𝒮; recall
that 𝑄𝑗(𝒮) ⊂ 𝒮∞. We now define the realization 𝜎𝜆(𝑓) :=

∑︀
𝑗∈Z𝑄𝑗,𝜆𝑓 of �̇� 𝑠

∞,𝑞 into 𝒮 ′
𝜇. Then

⟨𝜎(ℎ𝜆𝑓), 𝜙⟩ =
∑︁
𝑗∈Z

⟨ℎ𝜆𝑄𝑗,𝜆𝑓, 𝜙⟩ = 𝜆𝑛
∑︁
𝑗∈Z

⟨︀
𝑄𝑗,𝜆𝑓, 𝜙(𝜆(·))

⟩︀
= 𝜆𝑛

⟨︀
𝜎𝜆(𝑓), 𝜙(𝜆(·))

⟩︀
for all 𝜙 ∈ 𝒮𝜇. Hence,

𝜎(ℎ𝜆𝑓) = ℎ𝜆𝜎𝜆(𝑓) in 𝒮 ′
𝜇. (10)

As above, we also obtain that for 𝜎𝜆, the arguing in Steps 1–5 hold true. Then

[𝜎(𝑓)]∞ = [𝜎𝜆(𝑓)]∞ = 𝑓,

and 𝜎(𝑓) − 𝜎𝜆(𝑓) ∈ 𝒫∞. But 𝜕𝛼(𝜎(𝑓) − 𝜎𝜆(𝑓)) ∈ ̃︀𝐶0 ∩ 𝒫∞ = {0} if |𝛼| > 𝜇, and hence,
𝜎(𝑓)− 𝜎𝜆(𝑓) ∈ 𝒫𝜇. This implies ℎ𝜆(𝜎(𝑓)− 𝜎𝜆(𝑓)) ∈ 𝒫𝜇. Therefore,

ℎ𝜆𝜎(𝑓) = ℎ𝜆𝜎𝜆(𝑓) in 𝒮 ′
𝜇. (11)

Now, by (10) and (11) we obtain that 𝜎(ℎ𝜆𝑓) = ℎ𝜆𝜎(𝑓) in 𝒮 ′
𝜇.

Step 7. It is clear that 𝑄𝑟𝑄𝑗𝑓 = 0 as |𝑗 − 𝑟| > 2. Then

‖[𝜎(𝑓)]∞‖�̇� 𝑠
∞,𝑞

=sup
𝑙∈Z

sup
𝜈∈Z𝑛

(︁
2𝑙𝑛

∫︁
𝑃𝑙,𝜈

∑︁
𝑗>𝑙

2𝑗𝑠𝑞
⃒⃒⃒ ∑︁
𝑗−16𝑟6𝑗+1

𝑄𝑟𝑄𝑗𝑓
⃒⃒⃒𝑞
𝑑𝑥

)︁1/𝑞

=sup
𝑙∈Z

sup
𝜈∈Z𝑛

(︁
2𝑙𝑛

∫︁
𝑃𝑙,𝜈

∑︁
𝑗>𝑙

2𝑗𝑠𝑞
⃒⃒⃒ 1∑︁
𝑚=−1

𝑄𝑚+𝑗𝑄𝑗𝑓
⃒⃒⃒𝑞
𝑑𝑥

)︁1/𝑞

.

(12)

We let

̃︀𝛾1 := 1∑︁
𝑚=−1

𝛾(2−𝑚 ·)𝛾,

and define the operators ̃︀𝑄𝑗,1 as ̃̂︀𝑄𝑗,1𝑓 := ̃︀𝛾1(2−𝑗(·)) ̂︀𝑓.
Then we get

1∑︁
𝑚=−1

𝑄𝑚+𝑗𝑄𝑗 = ̃︀𝑄𝑗,1 for all 𝑗 ∈ Z. (13)
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We have

supp ̃︀𝛾1 ⊂ {︂
𝜉 ∈ R𝑛 :

1

2
6 |𝜉| 6 3

2

}︂
and ̃︀𝛾1(𝜉) > 1 as

3

4
6 |𝜉| 6 1

since ̃︀𝛾1(𝜉) > 𝛾2(𝜉), see the definition of 𝛾 in Section 1. Then ̃︀𝛾1 satisfies equations (2.1)–(2.3)
in [12] and owing to equation (5.1) and Corollary 5.3 in [12], we can replace the operators 𝑄𝑗

by ̃︀𝑄𝑗,1 in Definition 2 to obtain

‖𝑓‖�̇� 𝑠
∞,𝑞

. sup
𝑙∈Z

sup
𝜈∈Z𝑛

(︁
2𝑙𝑛

∫︁
𝑃𝑙,𝜈

∑︁
𝑗>𝑙

2𝑗𝑠𝑞
⃒⃒⃒ 1∑︁
𝑚=−1

𝑄𝑚+𝑗𝑄𝑗𝑓
⃒⃒⃒𝑞
𝑑𝑥

)︁1/𝑞

. ‖𝑓‖�̇� 𝑠
∞,𝑞

.

Hence, it follows from (12) that ‖[𝜎(𝑓)]∞‖�̇� 𝑠
∞,𝑞

= ‖𝑓‖�̇� 𝑠
∞,𝑞

.

Finally, for this identity for quasi-seminorms, we can add the following observation. Let
𝑓1 ∈ 𝒮 ′ be such that [𝑓1]∞ = [𝜎(𝑓)]∞. We have

‖[𝜎(𝑓)]∞‖�̇� 𝑠
∞,𝑞

= ‖[𝑓1]∞‖�̇� 𝑠
∞,𝑞

.

Let 𝑓2 ∈ 𝒮 ′ be such that [𝑓2]∞ = 𝑓 . By Step 5, 𝑓1 − 𝑓2 is a polynomial; we denote 𝑓1 − 𝑓2 =: ̃︀𝑓 .
But 𝑄𝑗([𝜎(𝑓)]∞) = 𝑄𝑗𝑓1 = 𝑄𝑗𝑓2 since 𝑄𝑗

̃︀𝑓 = 0; we also have 𝑄𝑗𝑓1 = 𝑄𝑗𝑓2 in the sense of
functions, since both 𝑄𝑗𝑓1 and 𝑄𝑗𝑓2 are smooth functions of exponential type, see Paley-Wiener
theorem [13, Thm. 1.7.7]). We again arrive at the desired identity. The proof is complete.

Remark 5. For all 𝑠 ∈ R, if 𝑓 ∈ �̇� 𝑠
∞,𝑞, the series

∑︀
𝑗>0𝑄𝑗𝑓 converges in 𝒮 ′. Indeed, the

inequality (8) becomes

|⟨𝑄𝑗𝑓, ̃︀𝑄𝑗𝑔⟩| . 2−𝑗(𝑁+𝑠)𝜁𝑚(𝑔)‖𝑓‖�̇� 𝑠
∞,𝑞

for all 𝑔 ∈ 𝒮 and all 𝑗 ∈ N0; here ̃︀𝑄𝑗 is the same as in Step 1 in the proof of Theorem 1.

The next lemma characterizes the number 𝜇; the proof of this lemma is similar to that given
by G. Bourdaud for Besov spaces [4, Prop. 2.2.1].

Lemma 8. Let 𝑠 > 0. Then there exists a function 𝑓 ∈ �̇� 𝑠
∞,𝑞 such that the series

∑︀
𝑗60𝑄𝑗𝑓

diverges in 𝒮 ′
𝜇−1.

Proof. We briefly outline the proof, since in case 𝑞 < ∞ we do not have the same spaces as in
[4]. We denote 𝑚 := 𝜇 − 1 = [𝑠]. Let 𝜙 ∈ 𝒟 be such that

∫︀
R𝑛

𝜙(𝑥)𝑑𝑥 = 1. As 𝜕𝑚
1 𝜙 ∈ 𝒮𝑚, we

split the sum
∑︀

𝑗60⟨𝑄𝑗𝑓, 𝜕
𝑚
1 𝜙⟩ into 𝐼1 + 𝐼2, where

𝐼1 := (−1)𝑚
∑︁
𝑗60

∫︁
R𝑛

(︀
𝜕𝑚
1 𝑄𝑗𝑓(𝑥)− 𝜕𝑚

1 𝑄𝑗𝑓(0)
)︀
𝜙(𝑥)𝑑𝑥, 𝐼2 := (−1)𝑚

∑︁
𝑗60

𝜕𝑚
1 𝑄𝑗𝑓(0).

It is sufficient to construct a function 𝑓 ∈ �̇� 𝑠
∞,𝑞 such that |𝐼1| < ∞ and |𝐼2| = ∞. For this

purpose, let 𝑔 ∈ 𝒮 be such that

̂︀𝑔 ∈ 𝒟, ̂︀𝑔 > 0, supp ̂︀𝑔 ⊂
{︂
𝜉 :

3

4
6 |𝜉| 6 1, 𝜉1 > 0

}︂
.

We let

𝑓(𝑥) :=
∑︁
𝑘>0

2𝑘(𝑠+𝑚)/2𝑔(2−𝑘𝑥).

Clearly, we have

𝑄𝑗𝑓(𝑥) = 2−𝑗(𝑠+𝑚)/2𝑔(2𝑗𝑥) if 𝑗 6 0, 𝑄𝑗𝑓(𝑥) = 0 if 𝑗 > 1,
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since 𝛾(2−𝑗𝜉)̂︀𝑔(2𝑘𝜉) = 0 if 𝑘 ̸= −𝑗 and 𝛾̂︀𝑔 = ̂︀𝑔; we recall that 𝛾(𝜉) = 1 as 3
4
6 |𝜉| 6 1. It is also

clear that for all 𝑗 6 0 the identities hold:

𝜕𝑚
1 𝑄𝑗𝑓(0) = (2𝜋)−𝑛𝑖𝑚2𝑗(𝑚−𝑠)/2

∫︁
R𝑛

𝜉𝑚1 ̂︀𝑔(𝜉) 𝑑𝜉,
|𝜕𝑚

1 𝑄𝑗𝑓(𝑥)− 𝜕𝑚
1 𝑄𝑗𝑓(0)| 6 (2𝜋)−𝑛2𝑗(𝑚−𝑠+2)/2

𝑛∑︁
𝑘=1

|𝑥𝑘|
∫︁
R𝑛

|𝜉𝑘| 𝜉𝑚1 ̂︀𝑔(𝜉) 𝑑𝜉.
Then

|
∑︁
𝑗60

𝜕𝑚
1 𝑄𝑗𝑓(0)| = ∞,

∑︁
𝑗60

‖∇𝜕𝑚
1 𝑄𝑗𝑓‖∞ < ∞.

It remains to prove that [𝑓 ]∞ ∈ �̇� 𝑠
∞,𝑞. Since∫︁
𝑃𝑘,𝜈

|𝑔(2𝑗𝑥)|𝑞𝑑𝑥 6 2−𝑗𝑛‖𝑔‖𝑞1

and 𝑠−𝑚 > 0, that is, 2𝑗𝑞(𝑠−𝑚)/2 6 1 for all 𝑗 6 0, we first have

2𝑘𝑛
∫︁

𝑃𝑘,𝜈

∑︁
0>𝑗>𝑘

2𝑗𝑞(𝑠−𝑚)/2|𝑔(2𝑗𝑥)|𝑞𝑑𝑥 6 ‖𝑔‖𝑞1
∑︁
0>𝑗>𝑘

2(𝑘−𝑗)𝑛 . ‖𝑔‖𝑞1 (14)

for all 𝑘 ∈ Z ∖N. Therefore, by taking the supremum over 𝑘 ∈ Z ∖N and 𝜈 ∈ Z𝑛 in (14), we
get

‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

. 1.

The proof is complete.

Without use the LP decomposition, we define the realized space of �̇� 𝑠
∞,𝑞.

Definition 5. The realized space of �̇� 𝑠
∞,𝑞 denoted by ̃̇︀𝐹 𝑠

∞,𝑞 is the set of all 𝑓 ∈ 𝒮 ′
𝜇 such that

[𝑓 ]∞ ∈ �̇� 𝑠
∞,𝑞 and 𝑓 (𝛼) ∈ ̃︀𝐶0 for all |𝛼| = 𝜇.

We should be sure of the identity 𝜎(�̇� 𝑠
∞,𝑞) = ̃̇︀𝐹 𝑠

∞,𝑞, where the mapping 𝜎 was defined in
Theorem 1. The direct embedding is by the definition; let us prove the opposite one.

Let 𝑓 ∈ ̃̇︀𝐹 𝑠
∞,𝑞, then 𝑓−𝜎([𝑓 ]∞) is a polynomial. Since ̃︀𝐶0∩𝒫∞ = {0} and 𝑓 (𝛼)−𝜕𝛼𝜎([𝑓 ]∞) ∈̃︀𝐶0 for all |𝛼| > 𝜇, we conclude 𝑓 − 𝜎([𝑓 ]∞) ∈ 𝒫𝜇, that is, 𝑓 = 𝜎([𝑓 ]∞) in 𝒮 ′

𝜇.

The space ̃̇︀𝐹 𝑠
∞,𝑞 is equipped with a quasi-seminorm defined as

‖𝑓‖ ̃̇︀𝐹 𝑠
∞,𝑞

:= ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

.

Of course, one has to justify this definition. If [𝑓 ]𝜇 = [𝑓1]𝜇 and [𝑓 ]∞ = [𝑓2]∞, then 𝑓1−𝑓2 ∈ 𝒫∞,

but 𝑄𝑗(𝑓1−𝑓2) = 0, which is a sufficient argument. In the case 𝑠 > 0, ̃̇︀𝐹 𝑠
∞,𝑞 can be characterized

in 𝒮 ′. This is done in the next lemma; for the case 𝑠 = 0 see Remark 6 below.

Lemma 9. Let 𝑠 > 0. Then ̃̇︀𝐹 𝑠
∞,𝑞 is the set of 𝑓 ∈ 𝒮 ′ such that [𝑓 ]∞ ∈ �̇� 𝑠

∞,𝑞, and 𝑓 (𝛼) ∈ ̃︀𝐶0

for all |𝛼| = 𝜇, and moreover:
(i) If 𝑠 /∈ N, then 𝑓 ∈ 𝐶𝜇−1 and 𝑓 (𝛼)(0) = 0 for all |𝛼| 6 𝜇− 1,
(ii) If 𝑠 ∈ N, then 𝑓 ∈ 𝐶𝜇−2 and 𝑓 (𝛼)(0) = 0 for all |𝛼| 6 𝜇− 2 with 𝜇 = 𝑠+ 1 > 2.

Proof. The proof is similar to the proofs of Proposition 4.8 in [7] and of Theorem 4.5 in [16]
thanks to the embedding �̇� 𝑠

∞,𝑞 →˓ �̇�𝑠
∞,∞; let us briefly outline this.
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Proof of (i). We first define ̃̇︀𝐹 𝑠
∞,𝑞 in 𝒮 ′ by replacing each 𝑄𝑗𝑓 by a polynomial of degree less

than 𝜇 in 𝜎(𝑓), see Theorem 1. Then we get a realization denoted 𝜎1. Since any realization on

�̇� 𝑠
∞,𝑞 is a surjective mapping, then if 𝑓 ∈ ̃̇︀𝐹 𝑠

∞,𝑞, there exists 𝑔 ∈ �̇� 𝑠
∞,𝑞 such that [𝑓 ]𝜇 = 𝑔, and it

is sufficient to take 𝑓 := 𝜎1(𝑔).
Construction of 𝜎1. Let 𝑔 ∈ �̇� 𝑠

∞,𝑞. Then the series

𝜎1(𝑔) :=
∑︁
𝑗∈Z

(︁
𝑄𝑗𝑔 −

∑︁
|𝛼|<𝜇

(𝑄𝑗𝑔)
(𝛼)(0)

𝑥𝛼

𝛼!

)︁
converges in 𝒮 ′. The mapping 𝜎1 : �̇�

𝑠
∞,𝑞 → 𝒮 ′ is a realization of �̇� 𝑠

∞,𝑞 into 𝒮 ′, where 𝜎1(𝑓) is the

unique representative of 𝑔 in 𝒮 ′, of class 𝐶𝜇−1, 𝜕𝛼𝜎1(𝑔)(0) = 0 for all |𝛼| 6 𝜇− 1, 𝜕𝛼𝜎1(𝑔) ∈ ̃︀𝐶0

for all |𝛼| = 𝜇 and ‖[𝜎1(𝑔)]∞‖�̇� 𝑠
∞,𝑞

= ‖𝑔‖�̇� 𝑠
∞,𝑞

.

We now present the role of the assumption 𝑠 /∈ N: by the Bernstein inequality

‖(𝑄𝑗𝑔)
(𝛼)‖∞ . 2𝑗|𝛼|‖𝑄𝑗𝑔‖∞ . 2𝑗(|𝛼|−𝑠)‖𝑔‖�̇�𝑠

∞,∞
,

we get⃒⃒⃒
𝑄𝑗𝑔(𝑥)−

∑︁
|𝛼|<𝜇

(𝑄𝑗𝑔)
(𝛼)(0)

𝑥𝛼

𝛼!

⃒⃒⃒
6‖𝑄𝑗𝑔‖∞ +

∑︁
|𝛼|6𝜇−1

|𝑥||𝛼|

𝛼!
‖(𝑄𝑗𝑔)

(𝛼)‖∞

.
(︀
2−𝑗𝑠 + 2𝑗(𝜇−1−𝑠)(1 + |𝑥|)𝜇−1

)︀
‖𝑔‖�̇�𝑠

∞,∞
, 𝑥 ∈ R𝑛, 𝑗 ∈ N0.

On the other hand, by the Taylor formula we have⃒⃒⃒
𝑄𝑗𝑔(𝑥)−

∑︁
|𝛼|<𝜇

(𝑄𝑗𝑔)
(𝛼)(0)

𝑥𝛼

𝛼!

⃒⃒⃒
6 𝜇

∑︁
|𝛼|=𝜇

|𝑥||𝛼|

𝛼!

1∫︁
0

(1− 𝑡)𝜇−1|(𝑄𝑗𝑔)
(𝛼)(𝑡𝑥)| 𝑑𝑡

. 2𝑗(𝜇−𝑠) |𝑥|𝜇 ‖𝑔‖�̇�𝑠
∞,∞

.

Therefore,

|𝜎1(𝑔)(𝑥)| .
{︁∑︁

𝑗>0

(︁
2−𝑗𝑠 + 2𝑗(𝜇−1−𝑠)(1 + |𝑥|)𝜇−1

)︁
+
∑︁
𝑗<0

2𝑗(𝜇−𝑠) |𝑥|𝜇
}︁
‖𝑔‖�̇� 𝑠

∞,𝑞
.

Thus, thanks to assumption 𝑠 ∈ R+∖N0, we get the convergence of above series with 𝜇−1−𝑠 =
[𝑠]− 𝑠 < 0 and 𝜇− 𝑠 > 0.

Proof of (ii). As in the previous step, we consider the mapping:

𝜎2(𝑔) :=
∑︁
𝑗>0

𝑄𝑗𝑔 +
∑︁
𝑗<0

(︁
𝑄𝑗𝑔 −

∑︁
|𝛼|<𝜇

(𝑄𝑗𝑔)
(𝛼)(0)

𝑥𝛼

𝛼!

)︁
for all 𝑔 ∈ �̇� 𝑠

∞,𝑞, (15)

where 𝜎2(𝑔) is the unique representative of 𝑔 in 𝒮 ′, and 𝜎2 is also a realization of �̇� 𝑠
∞,𝑞 into 𝒮 ′

satisfying 𝜕𝛼𝜎2(𝑔) ∈ ̃︀𝐶0 for all |𝛼| = 𝜇 and ‖[𝜎2(𝑔)]∞‖�̇� 𝑠
∞,𝑞

= ‖𝑔‖�̇� 𝑠
∞,𝑞

. If in addition 𝑠 > 0, then

𝜎2(𝑔) is of class 𝐶
𝜇−2.

Owing to Lemma 6, if 𝑓 ∈ ̃̇︀𝐹 𝑠
∞,𝑞, there exists 𝑔 ∈ �̇� 𝑠

∞,𝑞 such that [𝑓 ]𝜇 = 𝑔 and it is sufficient
to take

𝑓 := 𝜎2(𝑔)−
∑︁

|𝛽|6𝜇−2

(︁∑︁
𝑗>0

(𝑄𝑗𝑔)
(𝛽)(0)

)︁𝑥𝛽

𝛽!
.

For the realization 𝜎2 we refer to [7, Rem. 4.9]. In case 𝑠 > 0, for |𝛽| 6 𝜇 − 2, we have
|𝛽| − 𝑠 6 𝜇− 2− 𝑠 = −1, and then∑︁

𝑗>0

‖(𝑄𝑗𝑔)
(𝛽)‖∞ . ‖𝑔‖�̇� 𝑠

∞,𝑞

∑︁
𝑗>0

2(|𝛽|−𝑠)𝑗 . ‖𝑔‖�̇� 𝑠
∞,𝑞

;
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the estimate for the sum ∑︁
𝑗<0

|𝜕𝛽{𝑄𝑗𝑔 −
∑︁
|𝛼|<𝜇

(𝑄𝑗𝑔)
(𝛼)(0)

𝑥𝛼

𝛼!
}|

can be obtained as in [16]. The proof is complete.

Remark 6. If 𝑓 ∈ ̃̇︀𝐹 0
∞,𝑞 then 𝑓 = 𝜎2(𝑔), where 𝜎2(𝑔) is defined in the above proof, see (15).

Remark 7. Clearly, we can not identify �̇� 0
∞,2 with 𝐵𝑀𝑂, where the space 𝐵𝑀𝑂 is as defined

in [10], since ‖[𝑓 ]∞‖�̇� 0
∞,2

= 0 for all polynomials, while one can easily find a polynomial 𝑓 /∈ 𝒫1

such that
∫︀
R𝑛

(1 + |𝑥|𝑛+1)−1|𝑓(𝑥)|𝑑𝑥 = ∞, see [10].

4. Characterizations by differences

We now present a characterization of realized spaces ̃̇︀𝐹 𝑠
∞,𝑞 by means of differences. In view

of Lemmata 4 and 5, one could think that the scales 𝒩 𝑠,𝑚,𝑖
∞,𝑞 (𝑓), 𝑖 = 1, 2, 3, are other equivalent

quasi-seminorms in �̇� 𝑠
∞,𝑞. But this is not the case since for any polynomial 𝑓 of degree 𝑚 we

can have 𝒩 𝑠,𝑚,𝑖
∞,𝑞 (𝑓) ̸= 0, while ‖[𝑓 ]∞‖�̇� 𝑠

∞,𝑞
= 0; for instance 𝑓(𝑥) := 𝑥𝑚

1 , then Δ𝑚
ℎ 𝑓(𝑥) = 𝑚!ℎ𝑚

1

and 𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓) = 𝑚!2𝑚−𝑠(𝑞(𝑚 − 𝑠))−1/𝑞, which tends to infinity as 𝑠 ↑ 𝑚; the kernel of Δ𝑚

ℎ is
𝒫𝑚.

Lemma 10. Let (6) be satisfied. Then there exists a constant 𝑐 > 0 such that the inequality
𝒩 (𝑓) 6 𝑐‖[𝑓 ]∞‖�̇� 𝑠

∞,𝑞
holds for all 𝑓 ∈ 𝐹 𝑠

∞,𝑞, where 𝒩 := 𝒩 𝑠,𝑚,1
∞,𝑞 . The same holds if we replace

𝒩 𝑠,𝑚,1
∞,𝑞 by 𝒩 𝑠,𝑚,𝑖

∞,𝑞 with 𝑖 = 2, 3.

Proof. Lemmata 4 and 5 we have

𝒩 (𝑓) . ‖𝑓‖∞ + ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

for all 𝑓 ∈ 𝐹 𝑠
∞,𝑞. Replacing 𝑓 by 𝑓𝜆 := 𝑓(𝜆(·)) arbitrary 𝜆 > 0 in this inequality and using

Lemma 1, we obtain:

lim
𝜆→∞

𝜆−𝑠 𝒩 (𝑓𝜆) 6 𝑐 ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

for all 𝑓 ∈ 𝐹 𝑠
∞,𝑞. (16)

Let now 𝜆 > 1 and 𝑁 ∈ N be such that 2𝑁 6 𝜆 < 2𝑁+1. By the elementary inequality

∀𝑥 ∈ 𝑃𝑘,𝜈 : [2𝑁𝜆−1𝜈𝑗] 6 2𝑘+𝑁𝜆−1𝑥𝑗 < [2𝑁𝜆−1𝜈𝑗] + 2, 𝑗 = 1, . . . , 𝑛

recall that 2−1 < 2𝑁𝜆−1 6 1, we obtain

𝑥 ∈ 𝑃𝑘,𝜈 ⇒ 𝜆−1𝑥 ∈ 𝑃𝑘+𝑁,𝐸(2𝑁𝜆−1𝜈) ∪ 𝑃𝑘+𝑁,𝐸(2𝑁𝜆−1𝜈)+𝑤0
,

where 𝑤0 := (1, 1, . . . , 1) ∈ Z𝑛 and we have employed the notation 𝐸(𝑥) = ([𝑥1], . . . , [𝑥𝑛]) ∈ Z𝑛,
𝑥 ∈ R𝑛. As Δ𝑚

ℎ 𝑓(𝑥) = Δ𝑚
(𝜆−1ℎ)𝑓𝜆(𝜆

−1𝑥), with the change of variables 𝑦 := 𝜆−1𝑥, 𝑟 := 𝜆−1𝑡 and

𝑢 := 𝜆−1ℎ, we get:

2𝑘𝑛
21−𝑘∫︁
0

𝑡−𝑠𝑞 sup
𝑡
2
6|ℎ|<𝑡

∫︁
𝑃𝑘,𝜈

|Δ𝑚
ℎ 𝑓(𝑥)|𝑞 𝑑𝑥

𝑑𝑡

𝑡

. 𝜆−𝑠𝑞

1∑︁
𝑙=0

2(𝑘+𝑁)𝑛

21−(𝑘+𝑁)∫︁
0

𝑟−𝑠𝑞 sup
𝑟
2
6|𝑢|<𝑟

∫︁
𝑃
𝑘+𝑁,𝐸(2𝑁𝜆−1𝜈)+𝑙𝑤0

|Δ𝑚
𝑢 𝑓𝜆(𝑦)|𝑞𝑑𝑦

𝑑𝑟

𝑟
.

(17)
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We assume that 𝑘 ∈ N0 and this allows us to bound last term in (17) by

𝑐𝜆−𝑠𝑞 sup
𝑗∈N0

sup
𝜂∈Z𝑛

2𝑗𝑛
21−𝑗∫︁
0

𝑟−𝑠𝑞 sup
𝑟/26|𝑢|<𝑟

∫︁
𝑃𝑗,𝜂

|Δ𝑚
𝑢 𝑓𝜆(𝑦)|𝑞 𝑑𝑦

𝑑𝑟

𝑟
, (18)

where 𝑐 is independent of 𝑘. Calculating the supremum over 𝑘 ∈ N0 and 𝜈 ∈ Z𝑛 in (17), and
taking (18) into consideration, we obtain 𝒩 (𝑓) 6 𝑐𝜆−𝑠 𝒩 (𝑓𝜆). Finally by (16), we complete
the proof.

Here our second main result is as follows.

Theorem 2. Let 𝑚 ∈ N be such that (6) is satisfied. Then 𝒩 𝑠,𝑚,𝑖
∞,𝑞 (𝑓), 𝑖 = 1, 2, 3, define

equivalent quasi-seminorms in ̃̇︀𝐹 𝑠
∞,𝑞.

Proof. We consider only 𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓), since the estimates of 𝒩 𝑠,𝑚,𝑖

∞,𝑞 (𝑓), 𝑖 = 2, 3, can be obtained

in the same way. To simplify the notations, in the proof we write 𝒩 (𝑓) instead of 𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓).

The proof of ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

6 𝑐𝒩 (𝑓), for all regular tempered distribution 𝑓 obeying 𝒩 (𝑓) < ∞
can be done as in [18, Subs. 4.1] and we omit the details.

The opposite inequality is similar to that given in [18], and we present only the needed

changes. Let 𝑓 ∈ ̃̇︀𝐹 𝑠
∞,𝑞. We denote 𝑓𝑘 :=

∑︀
−𝑘6𝑗6𝑘𝑠

𝑄𝑗𝑓 , where 𝑘 ∈ N0. We also define 𝑘𝑠 := 0

as 𝑠 ∈ N and 𝑘𝑠 = 𝑘 as 𝑠 ∈ R+∖N. Then the function 𝑓𝑘 belongs to 𝐹
𝑠
∞,𝑞. Indeed, the inequality

‖𝑓𝑘‖∞ 6 𝑐‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

with a constant 𝑐 := 𝑐(𝑘) > 0, can be obtained by the assumption on 𝑠

and the following estimate:

|𝑄𝑗𝑓(𝑥)| 6 𝑐 2−𝑗𝑠‖𝑓‖�̇� 𝑠
∞,𝑞

, 𝑗 ∈ Z, 𝑥 ∈ R𝑛. (19)

In order to prove (19), it is sufficient to employ the embedding �̇� 𝑠
∞,𝑞 →˓ �̇� 𝑠

∞,∞ = �̇�𝑠
∞,∞.

Now we are goin to prove that

‖[𝑓𝑘]∞‖�̇� 𝑠
∞,𝑞

6 𝑐‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

(20)

with a constant independent of 𝑓 and 𝑘. We proceed as in Step 7 in the proof of Theorem 1.
Then similar to (12) recalling that 𝑄𝑟𝑄𝑗𝑓 = 0 as |𝑗 − 𝑟| > 2, we get

‖[𝑓𝑘]∞‖�̇� 𝑠
∞,𝑞

=sup
𝑙∈Z

sup
𝜈∈Z𝑛

(︁
2𝑙𝑛

∫︁
𝑃𝑙,𝜈

∑︁
𝑗>𝑙

⃒⃒⃒ ∑︁
−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

𝑄𝑟𝑄𝑗𝑓
⃒⃒⃒𝑞
2𝑗𝑠𝑞 𝑑𝑥

)︁1/𝑞

=sup
𝑙∈Z

sup
𝜈∈Z𝑛

(︁
2(𝑙−𝑁)𝑛

∫︁
𝑃𝑙−𝑁,𝜈

∑︁
𝑗>𝑙−𝑁

⃒⃒⃒ ∑︁
−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

𝑄𝑟𝑄𝑗𝑓
⃒⃒⃒𝑞
2𝑗𝑠𝑞 𝑑𝑥

)︁1/𝑞

,

(21)

for all 𝑁 ∈ Z. Since here the supremum is taken over all 𝑙 ∈ Z, it is translation invariant in
Z. The last identity is trivial but is useful for the next computation. On the one hand, in the
sum

∑︀
|𝑟−𝑗|61 . . . we have at most three terms corresponding to 𝑟 ∈ {𝑗 − 1, 𝑗, 𝑗 + 1}, and hence⃒⃒⃒ ∑︁

−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

𝑄𝑟𝑄𝑗𝑓
⃒⃒⃒𝑞
6 22(𝑞−1)

∑︁
−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

⃒⃒
𝑄𝑟𝑄𝑗𝑓

⃒⃒𝑞
. (22)

On the other hand, by the following elementary inequalities

if − 𝑘 6 𝑟 6 𝑘𝑠 and |𝑟 − 𝑗| 6 1 ⇒ −𝑘 − 1 6 𝑗 6 𝑘𝑠 + 1,

if − 𝑘 − 1 6 𝑗 6 𝑘𝑠 + 1 and |𝑟 − 𝑗| 6 1 ⇒ −𝑘 − 2 6 𝑟 6 𝑘𝑠 + 2,

by the fact that

{𝑟 ∈ Z : −𝑘 6 𝑟 6 𝑘𝑠} ⊂ {𝑟 ∈ Z : −𝑘 − 2 6 𝑟 6 𝑘𝑠 + 2},
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and by using (22), we obtain∑︁
𝑗>𝑙−𝑁

⃒⃒⃒ ∑︁
−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

𝑄𝑟𝑄𝑗𝑓
⃒⃒⃒𝑞
2𝑗𝑠𝑞 6 𝑐

∑︁
𝑗>𝑙−𝑁

∑︁
−𝑘6𝑟6𝑘𝑠
|𝑟−𝑗|61

⃒⃒
𝑄𝑟𝑄𝑗𝑓

⃒⃒𝑞
2𝑗𝑠𝑞

6 𝑐
∑︁

𝑗>𝑙−𝑁
−𝑘−16𝑗6𝑘𝑠+1

∑︁
|𝑟−𝑗|61

⃒⃒
𝑄𝑟𝑄𝑗𝑓

⃒⃒𝑞
2𝑗𝑠𝑞.

(23)

Choosing the integer 𝑁 := 𝑁𝑘,𝑙 such that −𝑘 − 1 > 𝑙−𝑁𝑘,𝑙, we bound the last term in (23) as
follows:

𝑐
∑︁

𝑗>𝑙−𝑁𝑘,𝑙

∑︁
|𝑚|61

⃒⃒
𝑄𝑗+𝑚𝑄𝑗𝑓

⃒⃒𝑞
2𝑗𝑠𝑞 with 𝑚 := 𝑟 − 𝑗.

Substituting this bound into (21), letting ℓ := 𝑙−𝑁𝑘,𝑙, and taking the supremum over all ℓ ∈ Z,
we get

‖[𝑓𝑘]∞‖�̇� 𝑠
∞,𝑞

6 𝑐
∑︁
|𝑚|61

sup
ℓ∈Z

sup
𝜈∈Z𝑛

(︁
2ℓ𝑛

∫︁
𝑃ℓ,𝜈

∑︁
𝑗>ℓ

⃒⃒
𝑄𝑗+𝑚𝑄𝑗𝑓

⃒⃒⃒𝑞
2𝑗𝑠𝑞 𝑑𝑥

)︁1/𝑞

(24)

for all 𝑘 ∈ N0. We continue by letting ̃︀𝛾𝑚 := 𝛾(2−𝑚(·))𝛾, and this function possesses the
following properties:

supp ̃︀𝛾0 ⊂ {︂
𝜉 ∈ R𝑛 :

1

2
6 |𝜉| 6 3

2

}︂
, ̃︀𝛾0(𝜉) > 1 as

3

4
6 |𝜉| 6 1,

supp ̃︀𝛾−1 ⊂
{︂
𝜉 ∈ R𝑛 :

1

2
6 |𝜉| 6 3

4

}︂
, ̃︀𝛾−1(𝜉) > 0 as

9

16
6 |𝜉| 6 11

16
.

Hence,

̃︀𝛾−1(𝜉) > 𝑐 > 0 on

{︂
𝜉 ∈ R𝑛 :

9

16
6 |𝜉| 6 11

16

}︂
, 𝑐 := min

9
16

6|𝜂|611
16

𝛾(2𝜂)𝛾(𝜂).

The next property is

supp ̃︀𝛾1 ⊂ {︂
𝜉 ∈ R𝑛 : 1 6 |𝜉| 6 3

2

}︂
, ̃︀𝛾1(𝜉) > 0 as

9

8
6 |𝜉| 6 11

8
,

and hence,

̃︀𝛾1(𝜉) > 𝑐 > 0 on

{︂
𝜉 ∈ R𝑛 :

9

8
6 |𝜉| 6 11

8

}︂
, 𝑐 := min

9
8
6|𝜂|611

8

𝛾
(︁𝜂
2

)︁
𝛾(𝜂).

Then we define the operators ̃︀𝑄𝑗,𝑚 as ̃̂︀𝑄𝑗,𝑚𝑓 := ̃︀𝛾𝑚(2−𝑗(·)) ̂︀𝑓 , and as in (13), this yields

𝑄𝑚+𝑗𝑄𝑗 = ̃︀𝑄𝑗,𝑚 for all 𝑗 ∈ Z.

We replace the operators 𝑄𝑗 by ̃︀𝑄𝑗,𝑚 with 𝑚 ∈ {−1, 0, 1} in Definition 2 and we denote by

‖ · ‖̃︀𝛾𝑚
�̇� 𝑠
∞,𝑞

the associated quasi-seminorms. By [12, Cor. 5.3], we have:

‖[𝑓 ]∞‖̃︀𝛾𝑚
�̇� 𝑠
∞,𝑞

6 𝑐 ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

,

where 𝑐 is independent of 𝑓 . But from (24), we also have

‖[𝑓𝑘]∞‖�̇� 𝑠
∞,𝑞

6 𝑐
1∑︁

𝑚=−1

‖[𝑓 ]∞‖̃︀𝛾𝑚
�̇� 𝑠
∞,𝑞

for all 𝑘 ∈ Z.

This proves estimate (20).
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Applying now Lemma 10 to 𝑓𝑘, we obtain

𝒩 (𝑓𝑘) 6 𝑐 ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

for all 𝑘 ∈ N0, (25)

the constant 𝑐 is independent of 𝑘, see (20). On the other hand, letting

𝑟𝑗(𝑥) :=
∑︁
|𝛼|<𝜇

(𝑄𝑗𝑓)
(𝛼)(0)

𝑥𝛼

𝛼!

and recalling that 𝜇 = [𝑠] + 1, cf. (7), we obtain that the sequence
(︀
𝑓𝑘 −

∑︀
−𝑘6𝑗6𝑘𝑠

𝑟𝑗
)︀
𝑘>0

converges uniformly on each compact subset of R𝑛 to a limit denoted 𝑣, see [18, (22), Subs. 2.2]
for �̇�𝑠

∞,∞. At the same time, �̇� 𝑠
∞,𝑞 →˓ �̇�𝑠

∞,∞ cf. Lemma 3. By applying twice the Fatou lemma
in (25), we get

𝒩 (𝑣) 6 𝑐 ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

. (26)

In case 𝑠 ∈ N, we add the following inequality:

𝒩
(︁∑︁

𝑗>0

𝑄𝑗𝑓
)︁
6 𝑐 ‖[𝑓 ]∞‖�̇� 𝑠

∞,𝑞
, (27)

that is,
∑︀

𝑗>0𝑄𝑗𝑓 ∈ 𝐹 𝑠
∞,𝑞. The latter can be obtained by Lemma 10 since we can apply (19)

thanks to 𝑠 > 0, see (6), and to obtain

‖
∑︁
𝑗>0

𝑄𝑗𝑓‖∞ . ‖[𝑓 ]∞‖
�̇� 𝑠∞,𝑞

and similar to Step 7 in the proof of Theorem 1, we also have

‖
∑︁
𝑗>0

𝑄𝑗𝑓‖�̇� 𝑠∞,𝑞
. ‖[𝑓 ]∞‖

�̇� 𝑠∞,𝑞
.

We let 𝑔 := 𝑣 +
∑︀

𝑗>0𝑄𝑗𝑓 if 𝑠 ∈ N and 𝑔 := 𝑣 if 𝑠 ∈ R+∖N. We have 𝑓 − 𝑔 ∈ 𝒫𝜇 and

𝒩 (𝒫𝜇) = {0}; recall that Δ𝑚
ℎ (𝑥

𝛼) = 0 for all |𝛼| < 𝑚, and by assumption 𝑚 > 𝜇 > 𝑠. Then it
follows from (26) and (27) that

𝒩 (𝑓) 6 𝒩 (𝑓 − 𝑔) +𝒩 (𝑔) . ‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

.

The proof is complete.

Remark 8. Of course, the statement of Lemma 4 is certainly known and in particular (i)
is classical, but now this can be deduced from Theorem 2 at least for 𝑞 > 1. Indeed, the difficult
part in the proof of Lemma 4 is ‖[𝑓 ]∞‖�̇� 𝑠

∞,𝑞
. ‖𝑓‖𝐹 𝑠

∞,𝑞
, where now, we get

‖[𝑓 ]∞‖�̇� 𝑠
∞,𝑞

. 𝒩 𝑠,𝑚,1
∞,𝑞 (𝑓) . 𝒩 𝑠,𝑚,1

∞,𝑞 (𝑓) + ‖𝑓‖∞ . ‖𝑓‖𝐹 𝑠
∞,𝑞

if 𝑞 > 1 and 𝑚 ∈ N is such that 0 < 𝑠 < 𝑚.

Conclusion

The realized spaces ̃̇︀𝐹 𝑠
∞,𝑞 of the homogeneous Triebel-Lizorkin spaces �̇� 𝑠

∞,𝑞 are now charac-
terized by quasi-seminorms in discrete and continuous (if 𝑠 > 0) forms. Our next step will be

the extension of the study on ̃̇︀𝐹 𝑠
∞,𝑞 to:

∙ the pointwise multiplication as in e.g. [2],
∙ the composition operators as in case of the realized homogeneous Besov spaces, see e.g.
[8, Thm. 4] or [17, Thm. 5.1],

∙ the pseudodifferential operators as in e.g. [15].
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