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ON SERIES OF DARBOUX INTEGRABLE DISCRETE

EQUATIONS ON SQUARE LATTICE

R.N. GARIFULLIN, R.I. YAMILOV

Abstract.We present a series of Darboux integrable discrete equations on a square lattice.

The equations in the series are numbered by natural numbers 𝑀 . All the equations possess

a first order first integral in one of directions of the two-dimensional lattice. The minimal

order of a first integral in the other direction is equal to 3𝑀 for an equation with the number

𝑀 . First integrals in the second direction are defined by a simple general formula depending

on the number 𝑀 .

In the cases 𝑀 = 1, 2, 3 we show that the equations are integrable by quadrature. More

precisely, we construct their general solutions in terms of the discrete integrals.

We also construct a modified series of Darboux integrable discrete equations having the

first integrals of the minimal orders 2 and 3𝑀 − 1 in different directions, where 𝑀 is the

equation number in series. Both first integrals are not obvious in this case.

A few similar series of integrable equations were known before; however, they were of

Burgers or sine-Gordon type. A similar series of the continuous hyperbolic type equations

was discussed by A.V. Zhiber and V.V. Sokolov in 2001.
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1. Introduction

We consider discrete equations of the form:

(𝑢𝑛+1,𝑚+1 + 1)(𝑢𝑛,𝑚+1 − 1) = 𝜃(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1), (1)

where 𝑛,𝑚 ∈ Z and 𝜃 is a constant coefficient. Two integrable equations of this form are
known. The case 𝜃 = 1 was presented in [12] and the case 𝜃 = −1 was found in [2]. In both the
cases the equations are Darboux integrable. Both equations have the first order first integral
in the 𝑛-direction, while in the 𝑚-direction the minimal orders of first integrals are 3 and 6,
respectively.
We present a series of equations of the form (1) with special coefficients 𝜃 = 𝜃𝑀 , 𝑀 ∈ N,

including two above examples. All equations are Darboux integrable and possess a first order
first integral in the 𝑛-direction. The minimal order of a first integral 𝑊2,𝑀 in the 𝑚-direction
is equal to 3𝑀 for an equation with the number 𝑀 and hence, these equations may have first
integrals of an arbitrarily high minimal order in the 𝑚-direction.
A few similar series of integrable equations were known before. In [5], a series of Darboux

integrable discrete equations was discussed, which however were of Burgers type. The minimal
orders of first integrals in both directions could be arbitrarily high there. An analogous series
of the continuous hyperbolic type equations was studied in [14]. In [7], a series of sine-Gordon
type autonomous discrete equations was presented. Autonomous generalized symmetries and
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conservation laws in both directions could have arbitrarily high minimal orders in this case.
Some series of non-autonomous discrete equations of sine-Gordon type were studied in [3].
It is interesting to construct the general solutions for considered equations of the form (1)

with such a high minimal order of first integrals. Following [6, 8, 9], we succeed to do this in
the cases 𝑀 = 1, 2, 3, where the first integrals 𝑊2,𝑀 have the minimal orders 3, 6 and 9. In
the case 𝑀 = 1 the general solution is constructed explicitly and coincides with the known
solution [12]. In the cases 𝑀 = 2, 3 we show that the equations are integrable by quadrature.
This means that one can construct general solutions in terms of the discrete integrals.
Using non-point transformations invertible on the solutions of discrete equations [13, 12],

we construct one more series of Darboux integrable discrete equations. Equations of this series
possess first integrals of the minimal orders 2 and 3𝑀 − 1 in different directions, where 𝑀 is
the equation number in the series. Both first integrals are not obvious in this case.
In Section 2 we introduce a series of discrete equations, prove their Darboux integrability,

and discuss the minimal orders of first integrals. The general solutions in the cases 𝑀 = 1, 2, 3
are constructed in Section 3. A modified series of integrable discrete equations is discussed in
Section 4.

2. Darboux integrability

We are going to study the following series of discrete equations:

(𝑢𝑛+1,𝑚+1 + 1)(𝑢𝑛,𝑚+1 − 1) = 𝜃𝑀(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1), (2)

where 𝜃𝑀 is the primitive root of unit of the degree 𝑀 ∈ N. More precisely, 𝜃1 = 1 and for
𝑀 > 1 one has:

𝜃𝑀𝑀 = 1, 𝜃𝑗𝑀 ̸= 1, 1 6 𝑗 6 𝑀 − 1. (3)

For example, all the primitive roots of the degree 𝑀 6 4 are

𝜃1 = 1, 𝜃2 = −1, 𝜃3 = −1

2
± 𝑖

√
3

2
, 𝜃4 = ±𝑖. (4)

For every 𝑀 > 2 we have at least two values of 𝜃𝑀 :

𝜃𝑀 = exp

(︂
±2𝜋

𝑖

𝑀

)︂
= cos

2𝜋

𝑀
± 𝑖 sin

2𝜋

𝑀
.

An equation of the form

𝐹 (𝑢𝑛+1,𝑚+1, 𝑢𝑛+1,𝑚, 𝑢𝑛,𝑚+1, 𝑢𝑛,𝑚) = 0 (5)

is called Darboux integrable if it has two first integrals 𝑊1, 𝑊2 such that

(𝑇𝑛 − 1)𝑊2 = 0, 𝑊2 = 𝑤(2)
𝑛,𝑚(𝑢𝑛,𝑚+𝑙, 𝑢𝑛,𝑚+𝑙−1, . . . , 𝑢𝑛,𝑚), (6)

(𝑇𝑚 − 1)𝑊1 = 0, 𝑊1 = 𝑤(1)
𝑛,𝑚(𝑢𝑛+𝑘,𝑚, 𝑢𝑛+𝑘−1,𝑚, . . . , 𝑢𝑛,𝑚). (7)

Here 𝑙, 𝑘 are some positive integers, and 𝑇𝑛, 𝑇𝑚 are operators of the shift in the 𝑛- and 𝑚-
directions, respectively: 𝑇𝑛ℎ𝑛,𝑚 = ℎ𝑛+1,𝑚, 𝑇𝑚ℎ𝑛,𝑚 = ℎ𝑛,𝑚+1. We suppose that relations (6), (7)
hold identically on the solutions of the corresponding equation (5).

The functions 𝑊1 and 𝑊2 are called the first integrals in the 𝑛- and 𝑚-directions, respectively.
We assume here that each of the conditions

𝜕𝑊1

𝜕𝑢𝑛,𝑚

̸= 0,
𝜕𝑊1

𝜕𝑢𝑛+𝑘,𝑚

̸= 0,
𝜕𝑊2

𝜕𝑢𝑛,𝑚

̸= 0,
𝜕𝑊2

𝜕𝑢𝑛,𝑚+𝑙

̸= 0 (8)

is satisfied for at least some 𝑛, 𝑚. The numbers 𝑘, 𝑙 are called the orders of these first integrals
𝑊1, 𝑊2, respectively.



102 R.N. GARIFULLIN, R.I. YAMILOV

The case 𝑀 = 1 is known, see equation (4.6) in [12]; equation (4.6) is obtained from (2) with
𝜃𝑀 = 1 by the point transformation

𝑣𝑛,𝑚 =
1 − 𝑢𝑛,𝑚

1 + 𝑢𝑛,𝑚

.

By constructing the first integrals in both directions, it is shown in [12] that this equation is
Darboux integrable and its general solution was found.

The case 𝑀 = 2 is also known, see equation (51a) in [2]. The first integrals in both directions
were found for this equation, see relations (53) in [2].

For each 𝑀 , equation (2) has the following first integral in the 𝑛-direction:

𝑊1,𝑀 = (𝜃𝑀)−𝑚(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1). (9)

This is true since equation (2) is equivalent to the identity

(𝑇𝑚 − 𝜃𝑀)[(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1)] = 0. (10)

Moreover, formula (9) with 𝜃𝑀 replaced by 𝜃 provides the first integral for equation (1) for each
𝜃. As for the 𝑚-direction, we succeed to find the following formula:

𝑊2,𝑀 =
(𝑢𝑛,𝑚+3𝑀 − 𝑢𝑛,𝑚+𝑀)(𝑢𝑛,𝑚+2𝑀 − 𝑢𝑛,𝑚)

(𝑢𝑛,𝑚+3𝑀 − 𝑢𝑛,𝑚+2𝑀)(𝑢𝑛,𝑚+𝑀 − 𝑢𝑛,𝑚)
, (11)

which provides first integrals for all equations (2). It is easy to see that these integrals (9)
and (11) have the orders 1 and 3𝑀 , respectively. Conditions (8) are satisfied for all 𝑛, 𝑚 in
this case. The fact that formula (11) defines a first integral in the case 𝑀 = 1 is checked by
straightforward calculations.

Theorem 1. The function 𝑊2,𝑀 defined by (11) is the first integral of equation (2), (3) in
the 𝑚-direction for each 𝑀 > 1.

Proof. We denote

Ψ𝑛,𝑚 = (𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1). (12)

By (2) we have

𝑇𝑚Ψ𝑛,𝑚 = 𝜃𝑀Ψ𝑛,𝑚, (13)

and therefore,

𝑇𝑀
𝑚 Ψ𝑛,𝑚 = Ψ𝑛,𝑚 (14)

for equations (2) satisfying condition (3). Using the notation

𝑢
(𝑗)
𝑛,𝑘 = 𝑢𝑛,𝑀𝑘+𝑗, 1 6 𝑗 6 𝑀, (15)

we rewrite (14) as a system:

(𝑢
(𝑗)
𝑛+1,𝑘+1 + 1)(𝑢

(𝑗)
𝑛,𝑘+1 − 1) = (𝑢

(𝑗)
𝑛+1,𝑘 + 1)(𝑢

(𝑗)
𝑛,𝑘 − 1), 1 6 𝑗 6 𝑀. (16)

We see that all equations in (16) are independent and each of them coincides with (2), in which
𝑀 = 1 and 𝑚 is replaced by 𝑘.

For this reason, for each equation of system (16) we can use the first integral 𝑊2,1 of equation
(2). As a result we get:

𝑊
(𝑗)
2 =

(𝑢
(𝑗)
𝑛,𝑘+3 − 𝑢

(𝑗)
𝑛,𝑘+1)(𝑢

(𝑗)
𝑛,𝑘+2 − 𝑢

(𝑗)
𝑛,𝑘)

(𝑢
(𝑗)
𝑛,𝑘+3 − 𝑢

(𝑗)
𝑛,𝑘+2)(𝑢

(𝑗)
𝑛,𝑘+1 − 𝑢

(𝑗)
𝑛,𝑘)

. (17)

Taking into consideration (15) we are led to the identity

𝑊
(𝑗)
2 =

(𝑢𝑛,𝑀(𝑘+3)+𝑗 − 𝑢𝑛,𝑀(𝑘+1)+𝑗)(𝑢𝑛,𝑀(𝑘+2)+𝑗 − 𝑢𝑛,𝑀𝑘+𝑗)

(𝑢𝑛,𝑀(𝑘+3)+𝑗 − 𝑢𝑛,𝑀(𝑘+2)+𝑗)(𝑢𝑛,𝑀(𝑘+1)+𝑗 − 𝑢𝑛,𝑀𝑘+𝑗)
. (18)
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Denoting 𝑚 = 𝑀𝑘 + 𝑗, we see that the relation 𝑇𝑛𝑊
(𝑗)
2 = 𝑊

(𝑗)
2 implies 𝑇𝑛𝑊2,𝑀 = 𝑊2,𝑀 for all

𝑛, 𝑚. Since (16) is equivalent to (14), the last relation is satisfied on each solution of equation
(14) and hence of (13).

The first integral 𝑊1,𝑀 obviously has the lowest possible order for each 𝑀 . As it is known
from [12, 2], in the cases 𝑀 = 1 and 𝑀 = 2 the integral 𝑊2,𝑀 also has the lowest possible
order in its direction. The same is true for the case 𝑀 = 3 as it follows from the next theorem.

Theorem 2. Equation (2), (3) with 𝑀 = 3 has no first integral of the order 𝑙 < 9 in the
𝑚-direction.

In order to prove this theorem, we apply a method described in detail in [4, Sect. 2.2].
That method uses so-called annihilation operators introduced in [10] and allows one to find
the first integrals. In the framework of this method, the proof reduces to straightforward but
cumbersome calculations.

The following conjecture seems to be true: first integral (11) of equation (2), (3) has the
lowest possible order for each 𝑀 > 1.

3. General solutions

We use and improve a method developed in [6, Section 5.2], [9, Section 4], [8]. We construct
the general solutions for equations (2) with 𝑀 = 1, 2, 3. In the case 𝑀 = 1, the solution is
explicit and coincides with a solution of [12] up to the Möbius transformation

𝑣𝑛,𝑚 =
1 − 𝑢𝑛,𝑚

1 + 𝑢𝑛,𝑚

.

Further calculations are however needed in the cases 𝑀 = 2, 3. Here the general solutions are
given in terms of discrete integrals in terminology of [8], i.e., equations (2) with 𝑀 = 2, 3 are
solved by quadrature.

Let us consider an ordinary discrete equation

𝑎𝑛+1 − 𝑎𝑛 = 𝐴𝑛, (19)

where 𝑎𝑛 is an unknown function and 𝐴𝑛 is given. We say that 𝑎𝑛 is found by a discrete
integration similar to the ordinary differential equation 𝑎′(𝑥) = 𝐴(𝑥), and the solution 𝑎𝑛 of
equation (19) is called the discrete integral of 𝐴𝑛.

The explicit general solution of equation (5) is called a function of the form
𝑢𝑛,𝑚 = Φ𝑛,𝑚[𝑎𝑛, 𝑏𝑚], where 𝑎𝑛, 𝑏𝑚 are arbitrary functions of one variable. Here the square
brackets mean that the function Φ𝑛,𝑚 depends on finitely many shifts 𝑎𝑛+𝑗, 𝑏𝑚+𝑗. Such a so-
lution is to satisfy identically equation (5) for all values of the functions 𝑎𝑛, 𝑏𝑚. For example,
the discrete wave equation

𝑢𝑛+1,𝑚+1 − 𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚+1 + 𝑢𝑛,𝑚 = 0

has the following general solution:

𝑢𝑛,𝑚 = 𝑎𝑛 + 𝑏𝑚.

Equation (5) is solved by quadrature if it has a solution of the form:

𝑢𝑛,𝑚 = Φ𝑛,𝑚

[︀
𝑎𝑛, 𝑏𝑚, 𝑎

(1)
𝑛 , 𝑎(2)𝑛 , . . . , 𝑎(𝑗1)𝑛 , 𝑏(1)𝑚 , 𝑏(2)𝑚 , . . . , 𝑏(𝑗2)𝑚

]︀
, (20)

where 𝑎𝑛, 𝑏𝑚 are arbitrary functions and the square brackets mean, as above, that the function

Φ𝑛,𝑚 depends on a finite number of the shifts of its arguments. The functions 𝑎
(𝑗)
𝑛 are obtained

from 𝑎𝑛 by a finite number of applications of the shift operator 𝑇𝑛, of the functions of many

variables, and of the discrete integrations. The functions 𝑏
(𝑗)
𝑚 are obtained from 𝑏𝑚 analogously.

So, the functions 𝑎
(𝑗)
𝑛 , 𝑏

(𝑗)
𝑚 and therefore solution (20) are implicit in a sense.
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3.1. Case 𝑀 = 1. Equation (2) is equivalent to

(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1) = 𝜆𝑛, (21)

where 𝜆𝑛 is an arbitrary function. This is a discrete Riccati equation, and we need to know its
particular solution in order to linearize and then to solve it. We cannot solve this equation for
a given 𝜆𝑛 in general case. We use the fact that the function 𝜆𝑛 is arbitrary and replace 𝜆𝑛 by
another arbitrary function 𝛼𝑛 which plays the role of particular solution:

𝜆𝑛 = (𝛼𝑛+1 + 1)(𝛼𝑛 − 1). (22)

In accordance with the known method of solving the Riccati equation, we use the transformation

𝑢𝑛,𝑚 = 𝛼𝑛 +
𝛼𝑛 − 1

𝑣𝑛,𝑚
(23)

to get a linear equation for 𝑣𝑛,𝑚:

𝛼𝑛+1 + 1

𝛼𝑛+1 − 1
𝑣𝑛+1,𝑚 + 𝑣𝑛,𝑚 + 1 = 0. (24)

To solve this equation, it is convenient to introduce a new arbitrary function 𝛽𝑛 instead of
𝛼𝑛 as follows:

𝛼𝑛+1 + 1

𝛼𝑛+1 − 1
= −𝛽𝑛+2 − 𝛽𝑛+1

𝛽𝑛+1 − 𝛽𝑛

. (25)

Here we follow [7], see (39), (40). Representing equation (24) in the form

(𝑇𝑛 − 1)[(𝛽𝑛 − 𝛽𝑛+1)𝑣𝑛,𝑚 + 𝛽𝑛] = 0, (26)

we find

𝑣𝑛,𝑚 =
𝛽𝑛 + 𝜔𝑚

𝛽𝑛+1 − 𝛽𝑛

, (27)

where 𝜔𝑚 is another arbitrary function. Finally, using (23), (25), (27), we find 𝑢𝑛,𝑚:

𝑢𝑛,𝑚 =
𝛽𝑛+1 − 2𝛽𝑛 + 𝛽𝑛−1

𝛽𝑛+1 − 𝛽𝑛−1

− 2
(𝛽𝑛+1 − 𝛽𝑛)(𝛽𝑛 − 𝛽𝑛−1)

(𝛽𝑛+1 − 𝛽𝑛−1)(𝛽𝑛 + 𝜔𝑚)
. (28)

It is easy to check that function (28) satisfies equation (2) with 𝑀 = 1 for all values of the
arbitrary functions 𝛽𝑛, 𝜔𝑚. Thus, we have found explicitly the general solution to (2) with
𝑀 = 1.

3.2. Cases 𝑀 = 2 and 𝑀 = 3. Equation (2) is equivalent to

(𝑢𝑛+1,𝑚 + 1)(𝑢𝑛,𝑚 − 1) = 𝜃𝑚𝑀𝜆𝑛, (29)

where 𝜆𝑛 is an arbitrary function. It is convenient to pass from (29) to an equivalent system
by means of transformation (15):

(𝑢
(𝑗)
𝑛+1,𝑘 + 1)(𝑢

(𝑗)
𝑛,𝑘 − 1) = 𝜃𝑗𝑀𝜆𝑛, 1 6 𝑗 6 𝑀. (30)

We note that 𝑗 is a number of the function 𝑢
(𝑗)
𝑛,𝑘, while 𝑛 and 𝑘 are discrete variables. Unlike

(29), the right hand side of equations (30) depends on one discrete variable 𝑛 only, as in the
case of (21).

By analogy with the previous case 𝑀 = 1, we can introduce functions 𝛼
(𝑗)
𝑛 so that:

𝜃𝑗𝑀𝜆𝑛 = (𝛼
(𝑗)
𝑛+1 + 1)(𝛼(𝑗)

𝑛 − 1), 1 6 𝑗 6 𝑀. (31)

Now we can apply the transformations

𝑢
(𝑗)
𝑛,𝑘 = 𝛼(𝑗)

𝑛 +
𝛼
(𝑗)
𝑛 − 1

𝑣
(𝑗)
𝑛,𝑘

(32)
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to get the linear equations for 𝑣
(𝑗)
𝑛,𝑘:

𝛼
(𝑗)
𝑛+1 + 1

𝛼
(𝑗)
𝑛+1 − 1

𝑣
(𝑗)
𝑛+1,𝑘 + 𝑣

(𝑗)
𝑛,𝑘 + 1 = 0. (33)

As above, we introduce functions 𝛽
(𝑗)
𝑛 such that

𝛼
(𝑗)
𝑛+1 + 1

𝛼
(𝑗)
𝑛+1 − 1

= −
𝛽
(𝑗)
𝑛+2 − 𝛽

(𝑗)
𝑛+1

𝛽
(𝑗)
𝑛+1 − 𝛽

(𝑗)
𝑛

, (34)

and we obtain

𝑣
(𝑗)
𝑛,𝑘 =

𝛽
(𝑗)
𝑛 + 𝜔

(𝑗)
𝑘

𝛽
(𝑗)
𝑛+1 − 𝛽

(𝑗)
𝑛

, (35)

where 𝜔
(𝑗)
𝑘 are arbitrary functions on 𝑘.

For 𝑢
(𝑗)
𝑛,𝑘, we can write formulae similar to (28). The problem is that, instead of one 𝑛-

dependent arbitrary function 𝛽𝑛 in the case 𝑀 = 1, we have now 𝑀 functions 𝛽
(𝑗)
𝑛 with a

complex relationship between them defined by (31) and (34). We can solve this problem for
𝑀 = 2 and 𝑀 = 3 in terms of the discrete integrals.

Case 𝑀 = 2. Excluding 𝜆𝑛 from system (31), we obtain an identity relating the functions 𝛼
(1)
𝑛

and 𝛼
(2)
𝑛 :

(𝛼
(1)
𝑛+1 + 1)(𝛼(1)

𝑛 − 1) = −(𝛼
(2)
𝑛+1 + 1)(𝛼(2)

𝑛 − 1). (36)

If one of these functions is known, then the second function is found by the Riccati equation.

If we replace 𝛼
(𝑗)
𝑛 by 𝛽

(𝑗)
𝑛 by the identities

𝛼(𝑗)
𝑛 =

𝛽
(𝑗)
𝑛+1 − 2𝛽

(𝑗)
𝑛 + 𝛽

(𝑗)
𝑛−1

𝛽
(𝑗)
𝑛+1 − 𝛽

(𝑗)
𝑛−1

, (37)

then a new relation between the functions 𝛽
(1)
𝑛 and 𝛽

(2)
𝑛 is even more complex.

In order to solve this problem, we rewrite (36) as

𝛼
(1)
𝑛 − 1

𝛼
(2)
𝑛 − 1

= −
𝛼
(2)
𝑛+1 + 1

𝛼
(1)
𝑛+1 + 1

. (38)

Denoting the left hand side by 𝛾𝑛+1, we get a system for 𝛼
(1)
𝑛 and 𝛼

(2)
𝑛 :

𝛼
(1)
𝑛 − 1

𝛼
(2)
𝑛 − 1

= 𝛾𝑛+1,
𝛼
(2)
𝑛 + 1

𝛼
(1)
𝑛 + 1

= −𝛾𝑛. (39)

Its solution reads as follows:

𝛼(1)
𝑛 = −𝛾𝑛+1𝛾𝑛 + 2𝛾𝑛+1 − 1

𝛾𝑛+1𝛾𝑛 + 1
, 𝛼(2)

𝑛 =
𝛾𝑛+1𝛾𝑛 − 2𝛾𝑛 − 1

𝛾𝑛+1𝛾𝑛 + 1
. (40)

Now we treat 𝛾𝑛 as a new arbitrary function, then the functions 𝛼
(1)
𝑛 and 𝛼

(2)
𝑛 are found

explicitly by (40). The functions 𝛽
(1)
𝑛 and 𝛽

(2)
𝑛 are found from (34) by two discrete integrations,

as relations (34) can be rewritten in the form:

(𝑇𝑛 − 1) log(𝛽
(𝑗)
𝑛+1 − 𝛽(𝑗)

𝑛 ) = log
1 + 𝛼

(𝑗)
𝑛+1

1 − 𝛼
(𝑗)
𝑛+1

.

We employ (32) and (35) to get a formula for the solution 𝑢𝑛,𝑚:

𝑢𝑛,𝑚 = 𝜒𝑚+1

(︃
𝛼(1)
𝑛 +

(𝛼
(1)
𝑛 − 1)(𝛽

(1)
𝑛+1 − 𝛽

(1)
𝑛 )

𝛽
(1)
𝑛 + 𝜔𝑚

)︃
+ 𝜒𝑚

(︃
𝛼(2)
𝑛 +

(𝛼
(2)
𝑛 − 1)(𝛽

(2)
𝑛+1 − 𝛽

(2)
𝑛 )

𝛽
(2)
𝑛 + 𝜔𝑚

)︃
, (41)
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where

𝜒𝑚 =
1 + (−1)𝑚

2
, 𝜔2𝑘+1 = 𝜔

(1)
𝑘 , 𝜔2𝑘+2 = 𝜔

(2)
𝑘 . (42)

In formula (41) we have two arbitrary functions 𝛾𝑛 and 𝜔𝑚, and the functions 𝛼
(𝑗)
𝑛 and 𝛽

(𝑗)
𝑛 are

defined as explained above. The functions 𝛼
(𝑗)
𝑛 are found explicitly, while the functions 𝛽

(𝑗)
𝑛 are

found by quadrature.

Case 𝑀 = 3. In this case, the relations for the functions 𝛼
(𝑗)
𝑛 , 𝑗 = 1, 2, 3, are implied by system

(31):

(𝛼
(2)
𝑛+1 + 1)(𝛼(2)

𝑛 − 1) = 𝜃3(𝛼
(1)
𝑛+1 + 1)(𝛼(1)

𝑛 − 1),

(𝛼
(3)
𝑛+1 + 1)(𝛼(3)

𝑛 − 1) = 𝜃3(𝛼
(2)
𝑛+1 + 1)(𝛼(2)

𝑛 − 1).

We rewrite these relations to introduce new functions 𝛾
(1)
𝑛 and 𝛾

(2)
𝑛 :

𝛼
(2)
𝑛+1 + 1

𝛼
(1)
𝑛+1 + 1

= 𝜃3
𝛼
(1)
𝑛 − 1

𝛼
(2)
𝑛 − 1

= 𝛾
(1)
𝑛+1,

𝛼
(3)
𝑛+1 + 1

𝛼
(2)
𝑛+1 + 1

= 𝜃3
𝛼
(2)
𝑛 − 1

𝛼
(3)
𝑛 − 1

= 𝛾
(2)
𝑛+1.

Using the shift operator 𝑇𝑛, we get two systems for three functions 𝛼
(𝑗)
𝑛 . The solutions of these

systems read as:

𝛼(1)
𝑛 =

2(𝛾
(1)
𝑛+1 − 𝜃3)

𝛾
(1)
𝑛+1𝛾

(1)
𝑛 − 𝜃3

− 1, 𝛼(2)
𝑛 =

2𝜃3(1 − 𝛾
(1)
𝑛 )

𝛾
(1)
𝑛+1𝛾

(1)
𝑛 − 𝜃3

+ 1, (43)

𝛼(2)
𝑛 =

2(𝛾
(2)
𝑛+1 − 𝜃3)

𝛾
(2)
𝑛+1𝛾

(2)
𝑛 − 𝜃3

− 1, 𝛼(3)
𝑛 =

2𝜃3(1 − 𝛾
(2)
𝑛 )

𝛾
(2)
𝑛+1𝛾

(2)
𝑛 − 𝜃3

+ 1. (44)

Two different formulae for the function 𝛼
(2)
𝑛 should be made compatible. It is convenient to

do this for the following function of 𝛼
(2)
𝑛 :

𝛼
(2)
𝑛 + 1

𝛼
(2)
𝑛 − 1

=
𝛾
(1)
𝑛 (𝜃3 − 𝛾

(1)
𝑛+1)

𝜃3(𝛾
(1)
𝑛 − 1)

=
𝜃3 − 𝛾

(2)
𝑛+1

𝛾
(2)
𝑛+1(𝛾

(2)
𝑛 − 1)

.

We rewrite the last identity in the form

𝛾
(1)
𝑛 (𝛾

(2)
𝑛 − 1)

𝛾
(1)
𝑛 − 1

= 𝜃3
𝛾
(2)
𝑛+1 − 𝜃3

𝛾
(2)
𝑛+1(𝛾

(1)
𝑛+1 − 𝜃3)

(45)

and denote the left hand side by 𝛿𝑛+1 − 1. Using the shift 𝑇𝑛, we get a system for 𝛾
(1)
𝑛 and 𝛾

(2)
𝑛 ,

which can be expressed as

𝛾(1)
𝑛 =

𝛿𝑛+1 − 1

𝛿𝑛+1 − 𝛾
(2)
𝑛

, (46)

𝜃3𝛿𝑛(𝛾(2)
𝑛 )2 − [(𝜃3 − 1)𝛿𝑛+1𝛿𝑛 + 𝛿𝑛+1 + 𝛿𝑛 + 𝜃23 − 1]𝛾(2)

𝑛 + 𝜃23𝛿𝑛+1 = 0. (47)

Now we consider 𝛿𝑛 as a new arbitrary function. All the other 𝑛-dependent functions are

expressed via this function. The functions 𝛾
(1)
𝑛 , 𝛾

(2)
𝑛 are given by (46,47), the functions 𝛼

(1)
𝑛 , 𝛼

(2)
𝑛

and 𝛼
(3)
𝑛 are found from (43), (44), and the functions 𝛽

(1)
𝑛 , 𝛽

(2)
𝑛 and 𝛽

(3)
𝑛 are found from (34). Let

us note that the functions 𝛼
(𝑗)
𝑛 and 𝛾

(1)
𝑛 are found explicitly, while the functions 𝛽

(𝑗)
𝑛 are found

by two discrete integrations, and 𝛾
(2)
𝑛 is defined implicitly by the quadratic equation. Solutions

𝑢
(1)
𝑛,𝑘, 𝑢

(2)
𝑛,𝑘 and 𝑢

(3)
𝑛,𝑘 of the system (30) are given by (32), (35).
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These solutions depend on the arbitrary functions 𝛿𝑛 and 𝜔
(1)
𝑘 , 𝜔

(2)
𝑘 , 𝜔

(3)
𝑘 , see (35). We return

back to the solution 𝑢𝑛,𝑚 of equation (29) with 𝑀 = 3 equivalent to equation (2), which is given
by transformation (15). From the viewpoint of this solution we have two arbitrary functions 𝛿𝑛
and 𝜔𝑚, where

𝜔3𝑘+1 = 𝜔
(1)
𝑘 , 𝜔3𝑘+2 = 𝜔

(2)
𝑘 , 𝜔3𝑘+3 = 𝜔

(3)
𝑘 .

4. Modified series

Here we use a transformation theory developed in [12, 13].
Let us rewrite equation (2) in the form:

𝑢𝑛,𝑚+1 − 1

𝑢𝑛,𝑚 − 1
= 𝜃𝑀

𝑢𝑛+1,𝑚 + 1

𝑢𝑛+1,𝑚+1 + 1
. (48)

This allows us to introduce a new function 𝑣𝑛,𝑚 such that:

𝑣𝑛,𝑚 = 𝜃𝑀
𝑢𝑛,𝑚 + 1

𝑢𝑛,𝑚+1 + 1
, 𝑣𝑛+1,𝑚 =

𝑢𝑛,𝑚+1 − 1

𝑢𝑛,𝑚 − 1
. (49)

The resulting relations are rewritten as

𝑢𝑛,𝑚 =
𝑣𝑛+1,𝑚𝑣𝑛,𝑚 − 2𝑣𝑛,𝑚 + 𝜃𝑀

𝑣𝑛+1,𝑚𝑣𝑛,𝑚 − 𝜃𝑀
𝑢𝑛,𝑚+1 = −𝑣𝑛+1,𝑚𝑣𝑛,𝑚 − 2𝜃𝑀𝑣𝑛+1,𝑚 + 𝜃𝑀

𝑣𝑛+1,𝑚𝑣𝑛,𝑚 − 𝜃𝑀
. (50)

Rewriting these formulae at the same point 𝑢𝑛,𝑚+1, we get an equation for 𝑣𝑛,𝑚:

(𝑣𝑛+1,𝑚+1 − 1)(𝑣𝑛,𝑚 − 𝜃𝑀) = 𝜃𝑀(1 − 𝑣−1
𝑛+1,𝑚)(1 − 𝜃𝑀𝑣−1

𝑛,𝑚+1), (51)

where 𝜃𝑀 is a primitive root of unit.
For all equations of form (2) we have got transformation (49) invertible on the solutions of (2).

Two series of equations (2) and (51) are equivalent up to this transformation. The particular
case 𝑀 = 2 of equation (51) is presented in [2, (3.31)] up to 𝑣𝑛,𝑚 → −𝑣𝑛,𝑚 together with the
first integrals. In the case 𝑀 = 1 we can apply the point transformation 𝑣𝑛,𝑚 = 1 + 𝑤−1

𝑛,𝑚 and
get the following equation:

𝑤𝑛+1,𝑚+1𝑤𝑛,𝑚 = (𝑤𝑛+1,𝑚 + 1)(𝑤𝑛,𝑚+1 + 1). (52)

This is nothing but the discrete Liouville equation found in [11]. Its first integrals and general
solution were constructed in [1, (19)]. In the general case we can rewrite the first integrals by
using transformation (49).

Theorem 3. For each 𝑀 > 1, equation (51) has the following first integrals in the 𝑛- and
𝑚-directions, respectively:

𝑊1,𝑀 = 𝜃−𝑚
𝑀

(𝑣𝑛+2,𝑚 − 1)𝑣𝑛+1,𝑚(𝑣𝑛,𝑚 − 𝜃𝑀)

(𝑣𝑛+2,𝑚𝑣𝑛+1,𝑚 − 𝜃𝑀)(𝑣𝑛+1,𝑚𝑣𝑛,𝑚 − 𝜃𝑀)
, (53)

𝑊2,𝑀 =

(︁
𝑉

(𝑀)
𝑛,𝑚+2𝑀𝑉

(𝑀)
𝑛,𝑚+𝑀 − 1

)︁(︁
𝑉

(𝑀)
𝑛,𝑚+𝑀𝑉

(𝑀)
𝑛,𝑚 − 1

)︁
(︁
𝑉

(𝑀)
𝑛,𝑚+2𝑀 − 1

)︁
𝑉

(𝑀)
𝑛,𝑚+𝑀

(︁
𝑉

(𝑀)
𝑛,𝑚 − 1

)︁ , (54)

𝑉 (𝑀)
𝑛,𝑚 = 𝑣𝑛,𝑚𝑣𝑛,𝑚+1 . . . 𝑣𝑛,𝑚+𝑀−1.

Proof. First integral (53) is obtained from (9) by straightforward calculations using transfor-
mation (50).

In order to prove (54), we need an auxiliary relation. It follows from the first identity of (49)
that for each 𝑘 > 1 the identities

𝑢𝑛,𝑚 + 1

𝑢𝑛,𝑚+𝑘 + 1
=

𝑢𝑛,𝑚 + 1

𝑢𝑛,𝑚+1 + 1

𝑢𝑛,𝑚+1 + 1

𝑢𝑛,𝑚+2 + 1
. . .

𝑢𝑛,𝑚+𝑘−1 + 1

𝑢𝑛,𝑚+𝑘 + 1
= 𝜃−𝑘

𝑀 𝑣𝑛,𝑚𝑣𝑛,𝑚+1 . . . 𝑣𝑛,𝑚+𝑘−1
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hold true. Now first integral (11) can be rewritten as

𝑊2,𝑀 =
[(𝑢𝑛,𝑚+3𝑀 + 1) − (𝑢𝑛,𝑚+𝑀 + 1)][(𝑢𝑛,𝑚+2𝑀 + 1) − (𝑢𝑛,𝑚 + 1)]

[(𝑢𝑛,𝑚+3𝑀 + 1) − (𝑢𝑛,𝑚+2𝑀 + 1)][(𝑢𝑛,𝑚+𝑀 + 1) − (𝑢𝑛,𝑚 + 1)]

=

(︁
𝑢𝑛,𝑚+3𝑀+1

𝑢𝑛,𝑚+𝑀+1
− 1
)︁(︁

1 − 𝑢𝑛,𝑚+1

𝑢𝑛,𝑚+2𝑀+1

)︁
(︁

𝑢𝑛,𝑚+3𝑀+1

𝑢𝑛,𝑚+2𝑀+1
− 1
)︁(︁

1 − 𝑢𝑛,𝑚+1

𝑢𝑛,𝑚+𝑀+1

)︁

=

(︂
𝜃2𝑀𝑀

𝑉
(𝑀)
𝑛,𝑚+𝑀𝑉

(𝑀)
𝑛,𝑚+2𝑀

− 1

)︂(︁
1 − 𝜃−2𝑀

𝑀 𝑉
(𝑀)
𝑛,𝑚 𝑉

(𝑀)
𝑛,𝑚+𝑀

)︁
(︂

𝜃𝑀𝑀

𝑉
(𝑀)
𝑛,𝑚+2𝑀

− 1

)︂(︁
1 − 𝜃−𝑀

𝑀 𝑉
(𝑀)
𝑛,𝑚

)︁ .

As 𝜃𝑀𝑀 = 1, we are led to first integral (54).

The order of first integral (53) is two. Let us show that this order is the minimal possi-

ble. If there exists a first integral ̃︁𝑊1,𝑛,𝑚(𝑣𝑛+1,𝑚, 𝑣𝑛,𝑚) for equation (51) in the 𝑛-direction, we
can use transformation (49) and get a first integral for equation (2) of a nonstandard form̂︁𝑊1,𝑛,𝑚(𝑢𝑛,𝑚+1, 𝑢𝑛,𝑚) satisfying the relation (𝑇𝑚 − 1)̂︁𝑊1,𝑛,𝑚 = 0. It is easy to check that this is
impossible.

The order of first integral (54) is equal to 3𝑀 − 1. In the cases 𝑀 = 1 and 𝑀 = 2, the fact
that this order 3𝑀 −1 is the minimal possible follows from [1] and [2], respectively. In the case
𝑀 = 3 we can prove the same using the fact that the order 9 of corresponding first integral
(11) of equation (2) is minimal, see Theorem 2.

In the case 𝑀 = 3, let us suppose that equation (51) has a first integral in the 𝑚-directioñ︁𝑊2,𝑛,𝑚(𝑣𝑛,𝑚+𝑘, 𝑣𝑛,𝑚+𝑘−1, . . . , 𝑣𝑛,𝑚)

of an order 1 6 𝑘 6 7. This means that for some 𝑛, 𝑚

𝜕̃︁𝑊2,𝑛,𝑚

𝜕𝑣𝑛,𝑚
̸= 0,

𝜕̃︁𝑊2,𝑛,𝑚

𝜕𝑣𝑛,𝑚+𝑘

̸= 0.

Employing the first relation of (49), we rewrite ̃︁𝑊2,𝑛,𝑚 in terms of 𝑢𝑛,𝑚+𝑗 and get a first integral
for equation (2) of the following form:̂︁𝑊2,𝑛,𝑚(𝑢𝑛,𝑚+𝑘+1, 𝑢𝑛,𝑚+𝑘, . . . , 𝑢𝑛,𝑚).

It easy to prove that its order is equal to 𝑘+ 1, where 2 6 𝑘+ 1 6 8 < 9, but this is impossible.
Finally we note that using the results of Section 3 and the first of transformations (49), we

can construct the general solutions for equations (51) with 𝑀 = 1, 2, 3.
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