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A NEW SUBCLASS OF UNIVALENT FUNCTIONS

GURMEET SINGH, GAGANDEEP SINGH, GURCHARANJIT SINGH

Abstract. Complex analysis is an old and vulnerable subject. Geometric function theory

is a branch of complex analysis that deals and studies the geometric properties of the

analytic functions. The geometric function theory studies the classes of analytic functions

in a domain lying in the complex plane 𝐶 subject to various conditions. The cornerstone of

the Geometric function theory is the theory of univalent and multivalent functions which is

considered as one of the active fields of the current research. Most of this field is concerned

with the class 𝑆 of functions analytic and univalent in the unit disc 𝐸 = {𝑧 :| 𝑧 |< 1}. One
of the most famous problem in this field was Bieberbach Conjecture. For many years this

problem stood as a challenge to the mathematicians and inspired the development of many

new techniques in complex analysis. In the course of tackling Bieberbach Conjecture, new

classes of analytic and univalent functions such as classes of convex and starlike functions

were defined and some nice properties of these classes were widely studied. In the present

study, we introduce an interesting subclass of analytic and close-to-convex functions in the

open unit disc 𝐸. For functions belonging to this class, we derive several properties such as

coefficient estimates, distortion theorems, inclusion relation, radius of convexity and Fekete-

Szegö Problem. The various results presented here would generalize some known results.

Keywords: Subordination, univalent functions, starlike functions, close-to-convex

functions, coefficient estimates, Fekete-Szegö problem
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1. Introduction

Let 𝐴 be the class of functions of the form

𝑓(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑎𝑛𝑧
𝑛 (1)

analytic in the open unit disc 𝐸 = {𝑧 :| 𝑧 |< 1}. Let 𝑆 be the class of functions 𝑓 ∈ 𝐴 and
univalent in 𝐸.
By 𝑈 we denote the class of bounded or Schwarz functions 𝑤(𝑧) satisfying 𝑤(0) = 0 and

|𝑤(𝑧)| 6 1 analytic in the unit disc 𝐸 and being of the form

𝑤(𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑧
𝑛, 𝑧 ∈ 𝐸. (2)

A function 𝑓 ∈ 𝐴 is said to belong to the class 𝑆* of starlike functions if it satisfies the inequality:

Re

(︂
𝑧𝑓 ′(𝑧)

𝑓(𝑧)

)︂
> 0(𝑧 ∈ 𝐸).

Gurmeet Singh, Gagandeep Singh, Gurcharanjit Singh, A New Subclass Of Univalent

Functions.

c○ Gurmeet Singh, Gagandeep Singh, Gurcharanjit Singh 2019.

Поступила 2 января 2018 г.

132



A NEW SUBCLASS OF UNIVALENT FUNCTIONS 133

A function 𝑓 ∈ 𝐴 is said to belong to the class𝐾 of convex functions if it satisfies the inequality:

Re

(︂
(𝑧𝑓 ′(𝑧))′

𝑓 ′(𝑧)

)︂
> 0(𝑧 ∈ 𝐸).

A function 𝑓 ∈ 𝐴 is said to belong to the class 𝐶 of close-to-convex if there exists a function
𝑔 ∈ 𝑆* satisfying the condition:

Re

(︂
𝑧𝑓 ′(𝑧)

𝑔(𝑧)

)︂
> 0(𝑧 ∈ 𝐸).

The concept of close-to-convex functions was introduced by Kaplan [4].
A function 𝑓 ∈ 𝐴 is said to be starlike with respect to symmetric points in 𝐸 if it satisfies

the condition:

Re

(︂
𝑧𝑓 ′(𝑧)

𝑓(𝑧) − 𝑓(−𝑧)

)︂
> 0.

This class is denoted by 𝑆*
𝑠 and was introduced and studied by Sakaguchi [10].

Since
𝑓(𝑧) − 𝑓(−𝑧)

2
is a starlike function in 𝐸 [1], the class 𝑆*

𝑠 also belongs to 𝐶.

Let 𝑓 and 𝑔 be two analytic functions in 𝐸. Then 𝑓 is said to be subordinate to 𝑔 (symbolically
𝑓 ≺ 𝑔) if there exists a bounded function 𝑤(𝑧) ∈ 𝑈 such that 𝑓(𝑧) = 𝑔(𝑤(𝑧)). This result is
known as the principle of subordination.
In many earlier studies, various interesting subclasses of the analytic functions of class 𝐴

and the univalent functions of class 𝑆 were studied from a number of different view points. We
choose to recall here some studies which are closely related to our work.
Following the concept of the class 𝑆*

𝑠 , Gao and Zhou [2] discussed the following subclass of
analytic functions, which is indeed a subclass of close-to-convex functions: Let 𝐾𝑆 denote the
class of functions of the form (1) and satisfying the condition

Re

(︂
− 𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(−𝑧)

)︂
> 0 (3)

where 𝑔 ∈ 𝑆*
(︂

1

2

)︂
.

Later, Kowalczyk and Les-Bomba [7] extended the class 𝐾𝑆 by introducing the following
subclass of analytic functions:

A functions 𝑓 ∈ 𝐴 is said to be in the class 𝐾𝑆(𝛾), 0 6 𝛾 < 1, if there exists a function

𝑔 ∈ 𝑆*
(︂

1

2

)︂
such that

Re

(︂
− 𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(−𝑧)

)︂
> 𝛾.

Obviously, 𝐾𝑆(0) ≡ 𝐾𝑆.
Recently Prajapat [9] introduced the following subclass of analytic functions:
A function 𝑓 ∈ 𝐴 is said to be in the class 𝜒𝑡(𝛾), |𝑡| 6 1, 𝑡 ̸= 0, 0 6 𝛾 < 1, if there exists a

function 𝑔 ∈ 𝑆*
(︂

1

2

)︂
such that

Re

(︂
𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)

)︂
> 𝛾.

In particular, 𝜒−1(𝛾) ≡ 𝐾𝑆(𝛾) and 𝜒−1(0) ≡ 𝐾𝑆.
Motivated by the above defined classes, we introduce the following subclass of analytic func-

tions:
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Let 𝜒𝑡(𝐴,𝐵), |𝑡| 6 1, 𝑡 ̸= 0, denote the class of functions 𝑓 ∈ 𝐴 and satisfying the conditions

𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)
≺ 1 + 𝐴𝑧

1 + 𝐵𝑧
, −1 6 𝐵 < 𝐴 6 1, 𝑧 ∈ 𝐸 (4)

where 𝑔 ∈ 𝑆*
(︂

1

2

)︂
.

The following observations are obvious:
(i) 𝜒𝑡(1 − 2𝛾,−1) ≡ 𝜒𝑡(𝛾).
(ii)𝜒−1(1 − 2𝛾,−1) ≡ 𝐾𝑆(𝛾).
(iii)𝜒−1(1,−1) ≡ 𝐾𝑆.
By definition of subordination it follows that 𝑓 ∈ 𝜒𝑡(𝐴,𝐵) if and only if 𝑓(𝑧) can be repre-

sented as

𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)
=

1 + 𝐴𝑤(𝑧)

1 + 𝐵𝑤(𝑧)
, 𝑤(𝑧) ∈ 𝑈, −1 6 𝐵 < 𝐴 6 1, 𝑧 ∈ 𝐸. (5)

In the present work, we obtain the coefficient estimates, inclusion relation, distortion theorems,
radius of convexity and Fekete-Szegö problem for the functions in the class 𝜒𝑡(𝐴,𝐵). Our
results extend the known results due to various authors.

Throughout our present discussion, to avoid repetition, we lay down once for all that

−1 6 𝐵 < 𝐴 6 1, 0 < |𝑡| 6 1, 𝑡 ̸= 0, 𝑧 ∈ 𝐸.

2. Main Results

2.1. Estimates for coefficients. To prove the results in this subsection, we make use of
the following lemmata.

Lemma 1 ([3]). Let

𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)
= 𝑃 (𝑧) = 1 +

∞∑︁
𝑛=1

𝑝𝑛𝑧
𝑛, (6)

then

|𝑝𝑛| 6 (𝐴−𝐵), 𝑛 > 1. (7)

The bounds are sharp being attained at the functions

𝑃𝑛(𝑧) =
1 + 𝐴𝛿𝑧𝑛

1 + 𝐵𝛿𝑧𝑛
, |𝛿| = 1.

Lemma 2 ([11]). As 𝑔 ∈ 𝑆*
(︂

1

2

)︂
, for

𝐺(𝑧) =
𝑔(𝑧)𝑔(𝑡𝑧)

𝑡𝑧
= 𝑧 +

∞∑︁
𝑛=2

𝑑𝑛𝑧
𝑛 ∈ 𝑆*, (8)

we have |𝑑𝑛| 6 𝑛.

Theorem 1. If 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), then

|𝑎𝑛| 6 1 +
(𝑛− 1)(𝐴−𝐵)

2
. (9)

Proof. As 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), we can express (5) as

𝑧𝑓 ′(𝑧)

𝐺(𝑧)
= 𝑃 (𝑧). (10)
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Using (1),(6) and (8) in (10), we get

1 +
∞∑︁
𝑛=2

𝑛𝑎𝑛𝑧
𝑛−1 =

(︃
1 +

∞∑︁
𝑛=2

𝑛𝑑𝑛𝑧
𝑛−1

)︃(︃
1 +

∞∑︁
𝑛=1

𝑝𝑛𝑧
𝑛

)︃
. (11)

Equating the coefficients of 𝑧𝑛−1 in (11), we have

𝑛𝑎𝑛 = 𝑑𝑛 + 𝑑𝑛−1𝑝1 + 𝑑𝑛−2𝑝2 + . . . + 𝑑2𝑝𝑛−2 + 𝑝𝑛−1. (12)

Therefore. using Lemma 1 and Lemma 2, we get

𝑛|𝑎𝑛| 6 𝑛 + (𝐴−𝐵)[(𝑛− 1) + (𝑛− 2) + . . . + 2 + 1]. (13)

Hence, by (13), we easily obtain (9).

Letting 𝐴 = 1− 2𝛾, 𝐵 = −1 in Theorem 1, the following result due to Prajapat [9] becomes
obvious.

Corollary 1. If 𝑓 ∈ 𝜒𝑡(𝛾), then

|𝑎𝑛| 6 1 + (𝑛− 1)(1 − 𝛾).

2.2. Inclusion relation. The following lemma is useful in the proof of the main result in
this subsection.

Lemma 3 ([11]). Let

−1 6 𝐵2 6 𝐵1 < 𝐴1 6 𝐴2 6 1,

then
1 + 𝐴1𝑧

1 + 𝐵1𝑧
≺ 1 + 𝐴2𝑧

1 + 𝐵2𝑧
.

Theorem 2. Let

−1 6 𝐵2 6 𝐵1 < 𝐴1 6 𝐴2 6 1,

then

𝜒𝑡(𝐴1, 𝐵1) ⊂ 𝜒𝑡(𝐴2, 𝐵2).

Proof. As 𝑓 ∈ 𝜒𝑡(𝐴1, 𝐵1), therefore

𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)
≺ 1 + 𝐴1𝑧

1 + 𝐵1𝑧
.

Since

−1 6 𝐵2 6 𝐵1 < 𝐴1 6 𝐴2 6 1,

by Lemma 3, we have
𝑡𝑧2𝑓 ′(𝑧)

𝑔(𝑧)𝑔(𝑡𝑧)
≺ 1 + 𝐴1𝑧

1 + 𝐵1𝑧
≺ 1 + 𝐴2𝑧

1 + 𝐵2𝑧
.

This yields that 𝑓 ∈ 𝜒𝑡(𝐴2, 𝐵2) and this proves the inclusion relation.

2.3. Distortion theorems.

Theorem 3. If 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), then for |𝑧| = 𝑟, 0 < 𝑟 < 1, we have

(1 − 𝐴𝑟)

(1 −𝐵𝑟)(1 + 𝑟)2
6 |𝑓 ′(𝑧)| 6 (1 + 𝐴𝑟)

(1 + 𝐵𝑟)(1 − 𝑟)2
(14)

and
𝑟∫︁

0

(1 − 𝐴𝑡)

(1 −𝐵𝑡)(1 + 𝑡)2
𝑑𝑡 6 |𝑓(𝑧)| 6

𝑟∫︁
0

(1 + 𝐴𝑡)

(1 + 𝐵𝑡)(1 − 𝑡)2
𝑑𝑡. (15)
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Proof. From (10), we have

|𝑓 ′(𝑧)| =
|𝐺(𝑧)|
|𝑧|

⃒⃒⃒⃒
1 + 𝐴𝑤(𝑧)

1 + 𝐵𝑤(𝑧)

⃒⃒⃒⃒
, 𝑤(𝑧) ∈ 𝐵. (16)

It is easy to show that the transform

𝑧𝑓 ′(𝑧)

𝐺(𝑧)
=

1 + 𝐴𝑤(𝑧)

1 + 𝐵𝑤(𝑧)

maps |𝑤(𝑧)| 6 𝑟 onto the circle⃒⃒⃒⃒
𝑧𝑓 ′(𝑧)

𝐺(𝑧)
− 1 − 𝐴𝐵𝑟2

1 −𝐵2𝑟2

⃒⃒⃒⃒
6

(𝐴−𝐵)𝑟

(1 −𝐵2𝑟2)
, |𝑧| = 𝑟.

This implies that
1 − 𝐴𝑟

1 −𝐵𝑟
6

⃒⃒⃒⃒
1 + 𝐴𝑤(𝑧)

1 + 𝐵𝑤(𝑧)

⃒⃒⃒⃒
6

1 + 𝐴𝑟

1 + 𝐵𝑟
. (17)

Since by Lemma 2, 𝐺(𝑧) is a starlike function and so due to a well known result, we have
𝑟

(1 + 𝑟)2
6 |𝐺(𝑧)| 6 𝑟

(1 − 𝑟)2
. (18)

Equation (16) together with (17) and (18) yields (14). On integrating (14) from 0 to 𝑟, (15)
follows.

For 𝐴 = 1 − 2𝛾, 𝐵 = −1, Theorem 3 gives the following result due to Prajapat [9]:

Corollary 2. If 𝑓 ∈ 𝜒𝑡(𝛾), then

1 − (1 − 2𝛾)𝑟

(1 + 𝑟)3
6 |𝑓 ′(𝑧)| 6 1 + (1 − 2𝛾)𝑟

(1 − 𝑟)3

and
𝑟∫︁

0

1 − (1 − 2𝛾)𝑡

(1 + 𝑡)3
𝑑𝑡 6 |𝑓(𝑧)| 6

𝑟∫︁
0

1 + (1 − 2𝛾)𝑡

(1 − 𝑡)3
𝑑𝑡.

2.4. Radius of convexity.

Theorem 4. If 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), then 𝑓(𝑧) is convex in |𝑧| < 𝑟1, where 𝑟1 is the smallest
positive root in (0, 1) of the equation

𝐴𝐵𝑟3 − 𝐴(𝐵 − 2)𝑟2 − (2𝐵 − 1)𝑟 − 1 = 0. (19)

Proof. As 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), we have
𝑧𝑓 ′(𝑧) = 𝐺(𝑧)𝑝(𝑧). (20)

After logarithmic differentiating (20), we get

1 +
𝑧𝑓 ′′(𝑧)

𝑓 ′(𝑧)
=

𝑧𝐺′(𝑧)

𝐺(𝑧)
+

𝑧𝑝′(𝑧)

𝑝(𝑧)
. (21)

Now for 𝐺(𝑧) ∈ 𝑆* we have

Re

(︂
𝑧𝐺′(𝑧)

𝐺(𝑧)

)︂
>

1 − 𝑟

1 + 𝑟
.

Therefore, (21) yields that

Re

(︂
1 +

𝑧𝑓 ′′(𝑧)

𝑓 ′(𝑧)

)︂
>

1 − 𝑟

1 + 𝑟
−
⃒⃒⃒⃒
𝑧𝑝′(𝑧)

𝑝(𝑧)

⃒⃒⃒⃒
.

Further, we have

Re

(︂
1 +

𝑧𝑓 ′′(𝑧)

𝑓 ′(𝑧)

)︂
>

1 − 𝑟

1 + 𝑟
− 𝑟(𝐴−𝐵)

(1 + 𝐴𝑟)(1 + 𝐵𝑟)
.
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After simplification we obtain

Re

(︂
1 +

𝑧𝑓 ′′(𝑧)

𝑓 ′(𝑧)

)︂
>

−𝐴𝐵𝑟3 + 𝐴(𝐵 − 2)𝑟2 + (2𝐵 − 1)𝑟 + 1

(1 + 𝑟)(1 + 𝐴𝑟)(1 + 𝐵𝑟)
.

Hence, the function 𝑓(𝑧) is convex in |𝑧| < 𝑟1, where 𝑟1 is the smallest positive root in (0, 1) of
the equation

𝐴𝐵𝑟3 − 𝐴(𝐵 − 2)𝑟2 − (2𝐵 − 1)𝑟 − 1 = 0.

For 𝐴 = 1 − 2𝛾, 𝐵 = −1, Theorem 4 gives the following result by Prajapat [9]:

Corollary 3. If 𝑓 ∈ 𝜒𝑡(𝛾), then 𝑓(𝑧) is convex in |𝑧| < 𝑟0 = 2 −
√

3.

2.5. Fekete-Szegö Problem. We use the following lemmata to prove the results in this
subsection:

Lemma 4. ( [5], [8]) If 𝑝(𝑧) = 1 + 𝑝1𝑧 + 𝑝2𝑧
2 + 𝑝3𝑧

3 + . . . is a function with positive real
part, then for each complex number 𝜇,

|𝑝2 − 𝜇𝑝21| 6 2 max{1, |2𝜇− 1|}
and the result is sharp for the functions given by

𝑝(𝑧) =
1 + 𝑧2

1 − 𝑧2
, 𝑝(𝑧) =

1 + 𝑧

1 − 𝑧
.

Lemma 5 ( [6]). If

𝐺(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑑𝑛𝑧
𝑛 ∈ 𝑆*,

then for each complex number 𝜆 obeying |𝑑3 − 𝜆𝑑22| 6 max{1, |3 − 4𝜆|} and the result is sharp
for the Koebe function 𝑘 if ⃒⃒⃒⃒

𝜆− 3

4

⃒⃒⃒⃒
>

1

4

and for

𝑘
1
2 (𝑧2) =

𝑧

1 − 𝑧2

if ⃒⃒⃒⃒
𝜆− 3

4

⃒⃒⃒⃒
6

1

4
.

Theorem 5. If 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), then for 𝜇 ∈ C we have

|𝑎3 − 𝜇𝑎22| 6
(𝐴−𝐵)

3
max{1, |2𝛾1 − 1|} +

1

3
max{1, |3 − 4𝜇1|} + 2(𝐴−𝐵)

⃒⃒⃒⃒
1

3
− 𝜇

2

⃒⃒⃒⃒
, (22)

where

𝛾1 =
(1 + 𝐵)

2
+

3(𝐴−𝐵)𝜇

8
, 𝜇1 =

3𝜇

4
.

Proof. As 𝑓 ∈ 𝜒𝑡(𝐴,𝐵), by (5) we have

𝑧𝑓 ′(𝑧)

𝐺(𝑧)
=

1 + 𝐴𝑤(𝑧)

1 + 𝐵𝑤(𝑧)
.

Let

ℎ(𝑧) =
1 + 𝑤(𝑧)

1 − 𝑤(𝑧)
= 1 + 𝑝1𝑧 + 𝑝2𝑧

2 + 𝑝3𝑧
3 + . . . ,
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then Re (ℎ(𝑧)) > 0 and ℎ(0) = 1. Hence,

𝑧𝑓 ′(𝑧)

𝐺(𝑧)
=

1 − 𝐴 + ℎ(𝑧)(1 + 𝐴)

1 −𝐵 + ℎ(𝑧)(1 + 𝐵)
. (23)

We expanding (23) to obtain

1 + (2𝑎2 − 𝑑2)𝑧 + (3𝑎3 − 2𝑎2𝑑2 − 𝑑3 + 𝑑22)𝑧
2 + . . . =1 +

𝑝1(𝐴−𝐵)𝑧

2

+
(𝐴−𝐵)

2

(︂
𝑝2 − 𝑝21

(︂
1 + 𝐵

2

)︂)︂
𝑧2 + . . .

Equating the coefficients at 𝑧 and 𝑧2 on both sides of the above equation, we get

𝑎2 =
2𝑑2 + 𝑝1(𝐴−𝐵)

4

and

𝑎3 =
1

3

(︂
𝑑3 +

(𝐴−𝐵)

2

(︂
𝑝1𝑑2 + 𝑝2 −

𝑝21(1 + 𝐵)

2

)︂)︂
.

Therefore, we have

|𝑎3 − 𝜇𝑎22| 6
(𝐴−𝐵)

6
|𝑝2 − 𝛾1𝑝

2
1| +

|𝑑3 − 𝜇1𝑑
2
2|

3
+

(𝐴−𝐵)

2
|𝑑2|

(︂
1

3
− 𝜇

2

)︂
|𝑝1|.

Using Lemma 4 and Lemma 5, we complete the proof.

For 𝐴 = 1 − 2𝛾, 𝐵 = −1, Theorem 5 gives the following result.
Corollary 4 If 𝑓 ∈ 𝜒𝑡(𝛾), then for 𝜇 ∈ 𝐶,

|𝑎3 − 𝜇𝑎22| 6
2(1 − 𝛾)

3
max{1, |2𝛾1 − 1|} +

max{1, |3 − 4𝜇1|}
3

+ 4(1 − 𝛾)

⃒⃒⃒⃒
1

3
− 𝜇

2

⃒⃒⃒⃒
,

where

𝛾1 =
3(1 − 𝛾)𝜇

4
, 𝜇1 =

3𝜇

4
.
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