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ON INTEGRABILITY OF A DISCRETE ANALOGUE

OF KAUP-KUPERSHMIDT EQUATION

R.N. GARIFULLIN, R.I. YAMILOV

Abstract. We study a new example of the equation obtained as a result of a recent

generalized symmetry classification of differential-difference equations defined on five points

of an one-dimensional lattice. We establish that in the continuous limit this new equation

turns into the well-known Kaup-Kupershmidt equation. We also prove its integrability by

constructing an 𝐿 − 𝐴 pair and conservation laws. Moreover, we present a possibly new

scheme for constructing conservation laws from 𝐿−𝐴 pairs.

We show that this new differential-difference equation is similar by its properties to

the discrete Sawada-Kotera equation studied earlier. Their continuous limits, namely the

Kaup–Kupershmidt and Sawada-Kotera equations, play the main role in the classification of

fifth order evolutionary equations made by V.G. Drinfel’d, S.I. Svinolupov and V.V. Sokolov.
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1. Introduction

We consider the differential-difference equation

𝑢𝑛,𝑡 = (𝑢2𝑛 − 1)

(︂
𝑢𝑛+2

√︁
𝑢2𝑛+1 − 1 − 𝑢𝑛−2

√︁
𝑢2𝑛−1 − 1

)︂
, (1)

where 𝑛 ∈ Z and 𝑢𝑛(𝑡) is the unknown function of one discrete variable 𝑛 and one continuous

variable 𝑡, and the subscript 𝑡 denotes the time derivative. Equation (1) is obtained as a result

of generalized symmetry classification of five-point differential-difference equations

𝑢𝑛,𝑡 = 𝐹 (𝑢𝑛+2, 𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛−2) (2)

made in [8]. Equation (1) coincides with the equation [8, (E17)] up to a scaling of 𝑢𝑛 and 𝑡 .

Equations (2) play an important role in the study of four-point discrete equations on the

square lattice, which are very relevant for today, see e.g. [1, 5, 6, 15]. No relation between (1)

and any other known equation of the form (2) is known. More precisely, here we mean the

relations in the form of the transformations

�̂�𝑛 = 𝜙(𝑢𝑛+𝑘, 𝑢𝑛+𝑘−1, . . . , 𝑢𝑛+𝑚), 𝑘 > 𝑚, (3)

and their compositions, see a detailed discussion of such transformations in [7]. The only

information we have at the moment on (1) is that it possesses a nine-point generalized symmetry
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of the form:

𝑢𝑛,𝜃 = 𝐺(𝑢𝑛+4, 𝑢𝑛+3, . . . , 𝑢𝑛−4).

In this article we study equation (1) in details. In Section 2 we find its continuous limit,

which is the well-known Kaup-Kupershmidt equation [4, 10]:

𝑈𝜏 = 𝑈𝑥𝑥𝑥𝑥𝑥 + 5𝑈𝑈𝑥𝑥𝑥 +
25

2
𝑈𝑥𝑈𝑥𝑥 + 5𝑈2𝑈𝑥, (4)

where the subscripts 𝜏 and 𝑥 denote 𝜏 and 𝑥 partial derivatives. In order to justify the

integrability of (1), we construct an 𝐿 − 𝐴 pair in Section 3 and in Section 4, we show

that it provides an infinity hierarchy of conservation laws. In Section 5 we discuss possible

generalizations of a scheme for constructing the conservation laws, which is formulated in

Section 4 for equation (1).

2. Continuous limit

In the continuous limit, most of the equations of form (2) presented in [8] turns into the

Korteweg-de Vries equation. The exceptions are (1) and the following two equations:

𝑢𝑛,𝑡 = 𝑢2𝑛(𝑢𝑛+2𝑢𝑛+1 − 𝑢𝑛−1𝑢𝑛−2) − 𝑢𝑛(𝑢𝑛+1 − 𝑢𝑛−1), (5)

𝑢𝑛,𝑡 = (𝑢𝑛 + 1)

(︂
𝑢𝑛+2𝑢𝑛(𝑢𝑛+1 + 1)2

𝑢𝑛+1

− 𝑢𝑛−2𝑢𝑛(𝑢𝑛−1 + 1)2

𝑢𝑛−1

+ (1 + 2𝑢𝑛)(𝑢𝑛+1 − 𝑢𝑛−1)

)︂
, (6)

which correspond to equations (E15) and (E16) in [8]. Equation (5) is known for a long time [17].

Equation (6) was found recently in [2] and it is related to (5) by a composition of transformations

of the form (3). In the continuous limit, these three equations correspond to the fifth order

equations of the form:

𝑈𝜏 = 𝑈𝑥𝑥𝑥𝑥𝑥 + 𝐹 (𝑈𝑥𝑥𝑥𝑥, 𝑈𝑥𝑥𝑥, 𝑈𝑥𝑥, 𝑈𝑥, 𝑈). (7)

There is a complete list of integrable equations (7), see [3, 11, 14]. Two equations play the

main role there, namely, (4) and the Sawada-Kotera equation [16]:

𝑈𝜏 = 𝑈𝑥𝑥𝑥𝑥𝑥 + 5𝑈𝑈𝑥𝑥𝑥 + 5𝑈𝑥𝑈𝑥𝑥 + 5𝑈2𝑈𝑥. (8)

All the other are transformed into these two by transformations of the form:

�̂� = Φ(𝑈,𝑈𝑥, 𝑈𝑥𝑥, . . . , 𝑈𝑥...𝑥).

It is known [1] that in the continuous limit equation (5) becomes the Sawada-Kotera equation

(8). The other results below are new.

Using the substitution

𝑢𝑛(𝑡) =
2
√

2

3
+

√
2

16
𝜀2𝑈

(︂
𝜏 − 9

80
𝜀5𝑡, 𝑥+

2

3
𝜀𝑡

)︂
, 𝑥 = 𝜀𝑛, (9)

in equation (1), as 𝜀→ 0 we get the Kaup-Kupershmidt equation (4).

It is interesting that equation (6) has two different continuous limits. The substitution

𝑢𝑛(𝑡) = −4

3
− 𝜀2𝑈

(︂
𝜏 − 18

5
𝜀5𝑡, 𝑥+

4

3
𝜀𝑡

)︂
, 𝑥 = 𝜀𝑛, (10)

in (6) leads us to equation (4), while the substitution

𝑢𝑛(𝑡) = −2

3
+ 𝜀2𝑈

(︂
𝜏 − 18

5
𝜀5𝑡, 𝑥+

4

3
𝜀𝑡

)︂
, 𝑥 = 𝜀𝑛, (11)

gives rise to equation (8). As well as (1), equation (6) deserves further study.
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In conclusion, let us present a picture that shows the link between discrete and continuous

equations:

(1) (6) (5)

(4) (8)

[
[]

(9)
�
�� (10)

[
[]

(11)
�
��

3. 𝐿− 𝐴 pair

As the continuous limit shows, the integrability properties of equation (1) should be close to

those of equation (5). Following the 𝐿 − 𝐴 pair [1, (15,17)], we look for an 𝐿 − 𝐴 pair of the

form:

𝐿𝑛𝜓𝑛 = 0, 𝜓𝑛,𝑡 = 𝐴𝑛𝜓𝑛 (12)

with the operator 𝐿𝑛 of the form:

𝐿𝑛 = 𝑙(2)𝑛 𝑇 2 + 𝑙(1)𝑛 𝑇 + 𝑙(0)𝑛 + 𝑙(−1)
𝑛 𝑇−1,

where 𝑙
(𝑘)
𝑛 , 𝑘 = −1, 0, 1, 2, depend on finitely many functions 𝑢𝑛+𝑗. Here 𝑇 is the shift operator:

𝑇ℎ𝑛 = ℎ𝑛+1. In this case the operator 𝐴𝑛 can be chosen as

𝐴𝑛 = 𝑎(1)𝑛 𝑇 + 𝑎(0)𝑛 + 𝑎(−1)
𝑛 𝑇−1.

The compatibility condition for the system (12) is

𝑑(𝐿𝑛𝜓𝑛)

𝑑𝑡
= (𝐿𝑛,𝑡 + 𝐿𝑛𝐴𝑛)𝜓𝑛 = 0 (13)

and it must be satisfied on virtue of equations (1) and 𝐿𝑛𝜓𝑛 = 0.

If we suppose that the coefficients 𝑙
(𝑘)
𝑛 depend on 𝑢𝑛 only, as in [1], we can see that 𝑎

(𝑘)
𝑛 depend

on 𝑢𝑛−1, 𝑢𝑛 only. However, in this case the problem has no solution. This is why we proceed to

the case when the functions 𝑙
(𝑘)
𝑛 depend on 𝑢𝑛, 𝑢𝑛+1. Then the coefficients 𝑎

(𝑘)
𝑛 must depend on

𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1. In this case we succeeded to find the operators 𝐿𝑛 and 𝐴𝑛 with one irremovable

arbitrary constant 𝜆 playing the role of a spectral parameter:

𝐿𝑛 = 𝑢𝑛

√︁
𝑢2𝑛+1 − 1𝑇 2 + 𝑢𝑛+1𝑇 + 𝜆

(︁
𝑢𝑛 − 𝑢𝑛+1

√︀
𝑢2𝑛 − 1𝑇−1

)︁
, (14)

𝐴𝑛 =

√︀
𝑢2𝑛 − 1

𝑢𝑛

(︁√︀
𝑢2𝑛 − 1(𝑢𝑛+1𝑇 + 𝑢𝑛−1𝑇

−1) − 𝜆−1𝑢𝑛−1𝑇 + 𝜆𝑢𝑛+1𝑇
−1
)︁
. (15)

The 𝐿−𝐴 pair (12,14,15) can be rewritten in the standard matrix form with 3× 3 matrices

�̃�𝑛, 𝐴𝑛:

Ψ𝑛+1 = �̃�𝑛Ψ𝑛, Ψ𝑛,𝑡 = 𝐴𝑛Ψ𝑛.

Here a new spectral function is given by

Ψ𝑛 = 2−𝑛

⎛⎜⎝
√

𝑢2
𝑛−1

𝑢𝑛
𝜓𝑛+1

𝜓𝑛

𝜓𝑛−1

⎞⎟⎠ ,

and the matrices �̃�𝑛, 𝐴𝑛 read:

�̃�𝑛 =

⎛⎜⎜⎝
− 1√

𝑢2
𝑛−1

− 𝜆
𝑢𝑛+1

𝜆
√

𝑢2
𝑛−1

𝑢𝑛

𝑢𝑛√
𝑢2
𝑛−1

0 0

0 1 0

⎞⎟⎟⎠ , (16)
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𝐴𝑛 =

⎛⎜⎜⎝ 𝜆−1 − 𝑢𝑛−2

𝑢𝑛

√︀
𝑢2𝑛−1 − 1 𝑢𝑛+1

√︀
𝑢2𝑛 − 1

(𝑢2
𝑛−1)(𝜆𝑢𝑛+2

√
𝑢2
𝑛+1−1−𝑢𝑛)

𝑢2
𝑛

𝑢𝑛+1

√︀
𝑢2𝑛 − 1 − 𝜆−1𝑢𝑛−1 0

𝜆𝑢𝑛+1

√
𝑢2
𝑛−1+𝑢𝑛−1(𝑢2

𝑛−1)

𝑢𝑛

𝑢𝑛 + 𝜆−1𝑢𝑛−2

√︀
𝑢2𝑛−1 − 1 𝑢𝑛𝑢𝑛−1 𝜆+ 𝑢𝑛−2

𝑢𝑛

√︀
𝑢2𝑛−1 − 1

⎞⎟⎟⎠ . (17)

In this case, unlike (13), the compatibility condition can be represented in matrix form:

�̃�𝑛,𝑡 = 𝐴𝑛+1�̃�𝑛 − �̃�𝑛𝐴𝑛

without using the spectral function Ψ𝑛.

There are two methods for constructing the conservation laws by using such matrix 𝐿 − 𝐴

pairs [5, 9, 12]. However, we do not see how to apply those methods in case of matrices (16)

and (17). In the next section, we shall use a different scheme for constructing conservation laws

from the 𝐿− 𝐴 pair (12), and this scheme seems to be new.

4. Conservation laws

The structure of operators (14,15) allows us to rewrite 𝐿 − 𝐴 pair (12) in form of the Lax

pair. The operator 𝐿𝑛 depends linearly on 𝜆:

𝐿𝑛 = 𝑃𝑛 − 𝜆𝑄𝑛, (18)

where

𝑃𝑛 = 𝑢𝑛

√︁
𝑢2𝑛+1 − 1𝑇 2 + 𝑢𝑛+1𝑇, 𝑄𝑛 = 𝑢𝑛+1

√︀
𝑢2𝑛 − 1𝑇−1 − 𝑢𝑛.

Introducing �̂�𝑛 = 𝑄−1
𝑛 𝑃𝑛, we get an equation of the form:

�̂�𝑛𝜓𝑛 = 𝜆𝜓𝑛. (19)

The functions 𝜆𝜓𝑛 and 𝜆−1𝜓𝑛 in the second equation of (12) can be expressed in terms of �̂�𝑛

and 𝜓𝑛 by using (19) and its consequence 𝜆−1𝜓𝑛 = �̂�−1
𝑛 𝜓𝑛. As a result we have:

𝜓𝑛,𝑡 = 𝐴𝑛𝜓𝑛, (20)

where

𝐴𝑛 =

√︀
𝑢2𝑛 − 1

𝑢𝑛

(︁√︀
𝑢2𝑛 − 1(𝑢𝑛+1𝑇 + 𝑢𝑛−1𝑇

−1) − 𝑢𝑛−1𝑇𝑃
−1
𝑛 𝑄𝑛 + 𝑢𝑛+1𝑇

−1𝑄−1
𝑛 𝑃𝑛

)︁
.

It is important that new operators �̂�𝑛 and 𝐴𝑛 in the 𝐿− 𝐴 pair (19,20) are independent of

the spectral parameter 𝜆. For this reason, the compatibility condition can be written in the

operator form without using 𝜓-function:

�̂�𝑛,𝑡 = 𝐴𝑛�̂�𝑛 − �̂�𝑛𝐴𝑛 = [𝐴𝑛, �̂�𝑛], (21)

i.e., now it is of the form of the Lax equation. The difference between this 𝐿 − 𝐴 pair and

well-known Lax pairs for the Toda and Volterra equations is that now the operators �̂�𝑛 and 𝐴𝑛

are nonlocal. Nevertheless, using the definition of inverse operators being linear:

𝑃𝑛𝑃
−1
𝑛 = 𝑃−1

𝑛 𝑃𝑛 = 1, 𝑄𝑛𝑄
−1
𝑛 = 𝑄−1

𝑛 𝑄𝑛 = 1, (22)

by straightforward calculations we can check that (21) holds true.

The conservation laws of equation (1), which are expressions of the form

𝜌
(𝑘)
𝑛,𝑡 = (𝑇 − 1)𝜎(𝑘)

𝑛 , 𝑘 > 0,
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can be derived from the Lax equation (21), notwithstanding nonlocal structure of the operators

�̂�𝑛, 𝐴𝑛, see [18]. For this we must, first of all, represent the operators �̂�𝑛, 𝐴𝑛 as formal series

in powers of 𝑇−1:

𝐻𝑛 =
∑︁
𝑘6𝑁

ℎ(𝑘)𝑛 𝑇 𝑘. (23)

Formal series of this kind can be multiplied according the rule:

(𝑎𝑛𝑇
𝑘)(𝑏𝑛𝑇

𝑗) = 𝑎𝑛𝑏𝑛+𝑘𝑇
𝑘+𝑗.

The inverse series can be obtained by definition (22), for instance:

𝑄−1
𝑛 = −(1 + 𝑞𝑛𝑇

−1 + (𝑞𝑛𝑇
−1)2 + . . .+ (𝑞𝑛𝑇

−1)𝑘 + . . .)
1

𝑢𝑛
, 𝑞𝑛 =

𝑢𝑛+1

𝑢𝑛

√︀
𝑢2𝑛 − 1.

The series �̂�𝑛 has the second order:

�̂�𝑛 =
∑︁
𝑘62

𝑙(𝑘)𝑛 𝑇 𝑘 = −(
√︁
𝑢2𝑛+1 − 1𝑇 2 + 𝑢𝑛+1𝑢𝑛𝑇 + 𝑢𝑛+1𝑢𝑛−1

√︀
𝑢2𝑛 − 1 + . . .).

The conserved densities 𝜌
(𝑘)
𝑛 of equation (1) can be found as:

𝜌(0)𝑛 = log 𝑙(2)𝑛 , 𝜌(𝑘)𝑛 = res �̂�𝑘
𝑛, 𝑘 > 1, (24)

where the residue of formal series (23) is defined by the rule: res𝐻𝑛 = ℎ
(0)
𝑛 , see [18]. The

corresponding functions 𝜎
(𝑘)
𝑛 can easily be found by direct calculations.

In this way below we find the conserved densities 𝜌
(𝑘)
𝑛 and then we simplify in accordance

with the rule:

𝜌(𝑘)𝑛 = 𝑐𝑘𝜌
(𝑘)
𝑛 + (𝑇 − 1)𝑔(𝑘)𝑛 ,

where 𝑐𝑘 are constant. First three densities of equation (1) read:

𝜌(0)𝑛 = log(𝑢2𝑛 − 1),

𝜌(1)𝑛 = 𝑢𝑛+1𝑢𝑛−1

√︀
𝑢2𝑛 − 1,

𝜌(2)𝑛 = (𝑢2𝑛 − 1)(2𝑢𝑛+2𝑢𝑛−2

√︁
𝑢2𝑛+1 − 1

√︁
𝑢2𝑛−1 − 1 + 𝑢2𝑛+1𝑢

2
𝑛−1)

+ 𝑢𝑛+1𝑢𝑛−1𝑢𝑛
√︀
𝑢2𝑛 − 1(𝑢𝑛+2

√︁
𝑢2𝑛+1 − 1 + 𝑢𝑛−2

√︁
𝑢2𝑛−1 − 1).

5. Discussion of the construction scheme

In the previous section we have outlined the scheme for constructing the conservation laws

by example of equation (1). It can easily be generalized for the equations of an arbitrarily high

order:

𝑢𝑛,𝑡 = 𝐹 (𝑢𝑛+𝑀 , 𝑢𝑛+𝑀−1, . . . , 𝑢𝑛−𝑀).

Assume that such equation has an 𝐿−𝐴 pair of the form (12) with a linear in 𝜆 operator 𝐿𝑛,

and let the operators 𝑃𝑛, 𝑄𝑛 of (18) have the form:

𝑅𝑛 =

𝑘2∑︁
𝑘=𝑘1

𝑟(𝑘)𝑛 𝑇 𝑘, 𝑘1 6 𝑘2 ∈ Z, (25)

with the coefficients 𝑟
(𝑘)
𝑛 depending on finitely many functions 𝑢𝑛+𝑗. We suppose that

�̂�𝑛 = 𝑄−1
𝑛 𝑃𝑛 =

∑︁
𝑘6𝑁

𝑙(𝑘)𝑛 𝑇 𝑘
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has a positive order 𝑁 > 1. If 𝑁 6 −1, then we change 𝜆 → 𝜆−1 and introduce �̃�𝑛 = 𝑃−1
𝑛 𝑄𝑛

of a positive order. In the case 𝑁 = 0, the scheme does not work.

As 𝜆𝑘𝜓𝑛 = �̂�𝑘
𝑛𝜓𝑛 for any integer 𝑘, we can consider operators 𝐴𝑛 of the form:

𝐴𝑛 =

𝑚2∑︁
𝑘=𝑚1

𝑎(𝑘)𝑛 [𝑇 ]𝜆𝑘, 𝑚1 6 𝑚2 ∈ Z,

where 𝑎
(𝑘)
𝑛 [𝑇 ] are operators of the form (25). Then we can rewrite 𝐴𝑛 as

𝐴𝑛 =

𝑚2∑︁
𝑘=𝑚1

𝑎(𝑘)𝑛 [𝑇 ]𝐿𝑘
𝑛 =

∑︁
𝑘6�̂�

�̂�(𝑘)𝑛 𝑇 𝑘.

We are led to Lax equation (21) with �̂�𝑛, 𝐴𝑛 of form (23) and, therefore, we can construct the

conserved densities as written above, namely, according (24) with the only difference 𝜌
(0)
𝑛 =

log 𝑙
(𝑁)
𝑛 .

It should be remarked that the scheme can easily be applied to equation (5) with the 𝐿−𝐴

pair [1, (15,17)].

In a quite similar way this scheme can also be applied in the continuous case, namely, to

PDEs of the form

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . , 𝑢𝑥...𝑥).

We consider the operators (25) with 𝐷𝑥 instead of 𝑇 , which become the differential operators,

where 𝐷𝑥 is the operator of total 𝑥-derivative. Besides, 𝑘2 > 𝑘1 > 0 and the coefficients 𝑟
(𝑘)
𝑛

depend on finitely many functions 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . . Instead of (23) we consider the formal series

in powers of 𝐷−1
𝑥 . A theory of such formal series and, in particular, the definition of the residue

were discussed in [13].
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