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ON INTEGRABILITY OF A DISCRETE ANALOGUE
OF KAUP-KUPERSHMIDT EQUATION

R.N. GARIFULLIN, R.I. YAMILOV

Abstract. We study a new example of the equation obtained as a result of a recent
generalized symmetry classification of differential-difference equations defined on five points
of an one-dimensional lattice. We establish that in the continuous limit this new equation
turns into the well-known Kaup-Kupershmidt equation. We also prove its integrability by
constructing an L — A pair and conservation laws. Moreover, we present a possibly new
scheme for constructing conservation laws from L — A pairs.

We show that this new differential-difference equation is similar by its properties to
the discrete Sawada-Kotera equation studied earlier. Their continuous limits, namely the
Kaup-Kupershmidt and Sawada-Kotera equations, play the main role in the classification of
fifth order evolutionary equations made by V.G. Drinfel’d, S.I. Svinolupov and V.V. Sokolov.
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1. INTRODUCTION

We consider the differential-difference equation

Upyt = (u2 —1) (un+2\/u%+1 — 1 —up_oy/ud | — 1) , (1)

where n € Z and u,(t) is the unknown function of one discrete variable n and one continuous
variable ¢, and the subscript ¢ denotes the time derivative. Equation ([1]) is obtained as a result
of generalized symmetry classification of five-point differential-difference equations

Un,t = F(un+27 Un+41, Upy Un—1, un72) (2)

made in [8]. Equation (1)) coincides with the equation [8, (E17)] up to a scaling of u,, and ¢ .

Equations play an important role in the study of four-point discrete equations on the
square lattice, which are very relevant for today, see e.g. |1,/5,/6,/15]. No relation between (1)
and any other known equation of the form is known. More precisely, here we mean the
relations in the form of the transformations

ﬂn = (’D(Un+k, Un+k—1, - - - 7un+m)’ k> m, (3)

and their compositions, see a detailed discussion of such transformations in [7]. The only
information we have at the moment on (|1f) is that it possesses a nine-point generalized symmetry
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of the form:
Uno = G(Upsa, Ungsy -y Up—a).
In this article we study equation in details. In Section [2| we find its continuous limit,
which is the well-known Kaup-Kupershmidt equation [4}10]:

25

where the subscripts 7 and x denote 7 and z partial derivatives. In order to justify the
integrability of (1)), we construct an L — A pair in Section [3] and in Section [ we show
that it provides an infinity hierarchy of conservation laws. In Section [5| we discuss possible
generalizations of a scheme for constructing the conservation laws, which is formulated in
Section {4 for equation ([1)).

2. CONTINUOUS LIMIT

In the continuous limit, most of the equations of form presented in [8] turns into the
Korteweg-de Vries equation. The exceptions are and the following two equations:

Ut = U (Up g 2Up 1 — Up—1Un—2) — U (Ung1 — Up_1), (5)

un+2un(un+l + 1>2 i un—2un(un—l + 1)2

un,t - (un + 1) ( + (]- + 2un)(un+1 - un—l)) ) (6)
Un+1 Up—1

which correspond to equations (E15) and (E16) in [8]. Equation (5)) is known for a long time [17].
Equation @ was found recently in [2| and it is related to () by a composition of transformations
of the form . In the continuous limit, these three equations correspond to the fifth order
equations of the form:

Ur = Ussee + F(Usses Usas Usas U, U). (7)

There is a complete list of integrable equations , see [3,[11,/14]. Two equations play the
main role there, namely, and the Sawada-Kotera equation [16]:

All the other are transformed into these two by transformations of the form:
U=oU,U,, Uy, ..., Uy o).

It is known [1] that in the continuous limit equation (5)) becomes the Sawada-Kotera equation
(8). The other results below are new.
Using the substitution

2V2 V2, 9 . 2
nt:_ - —_ — t’ —t , = , 9
un(t) 3 + 165U(r 0° x—|—3€ r=en (9)

in equation , as ¢ — 0 we get the Kaup-Kupershmidt equation (4.
It is interesting that equation (6) has two different continuous limits. The substitution

4 18 4
Uy (t) = 3~ e*U (T — 35515@ + §£t> , T =en, (10)
in @ leads us to equation (4)), while the substitution
2 18 4
up(t) = -3 +&*U (7’ — 35525, x + §€t) , T =e¢n, (11)

gives rise to equation (). As well as (1)), equation (6)) deserves further study.
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In conclusion, let us present a picture that shows the link between discrete and continuous
equations:

(1) @ ()

e\ /wmoN

3. L— A PAIR

As the continuous limit shows, the integrability properties of equation should be close to
those of equation (). Following the L — A pair [1, (15,17)], we look for an L — A pair of the
form:

ann = 07 z/}n,t = Anwn (12)
with the operator L,, of the form:

Ly =197 107 1@ 4O

where lﬁlk), k= —1,0,1,2, depend on finitely many functions w, ;. Here 1" is the shift operator:
Th, = h,,1. In this case the operator A,, can be chosen as

Ay =a VT + a9 4 oV
The compatibility condition for the system is

% — (Lt + LAy}t = 0 (13)
and it must be satisfied on virtue of equations and L,, = 0.

If we suppose that the coefficients 1o depend on u,, only, as in |1, we can see that aﬁﬁ) depend
on u,_1,u, only. However, in this case the problem has no solution. This is why we proceed to
the case when the functions (" depend on u,, u, 1. Then the coefficients a'™ must depend on
Up_1, Up, Upr1- In this case we succeeded to find the operators L, and A, with one irremovable

arbitrary constant A playing the role of a spectral parameter:

Ln = Un\ / u?z—‘,—l — 1T2 + Un+1T + )\ (un - un—‘,—l U% - 1T—1> ) (14)
V2 —1
A, = VU T2 (\/u% — 11 T+t T = XNy, (T + )\Un+1T_1> . (15)

u?’b
The L — A pair (12|14]15) can be rewritten in the standard matrix form with 3 x 3 matrices
Ly, A
\I/nJrl = Ln‘yna \I]nt = An\Ijn

Here a new spectral function is given by

Vouz—1

a1

\I/n =27 Q/Jn ’
¢n—1

and the matrices f}n, A, read:

1 A >‘\/ u%_l

~ \/U%*l _un+1 Un
n = = 0 0 : (16)
uz—1

n

0 1 0
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2 2
-1 _ Un—2 2 _ 2 (u'rz*l)()‘un#»Z un+1717un)
A =\ Uy 1 Uppr/u2 —1 u%\/
A, = -1 Atnt14/ud —14un—1(up —1) : 17
! Unt1y/Up — 1= A" Uy 0 (17)

Un

Un—2 2
1 Uy Upy—1 A+ o Uny — 1

Up + Ay oy /u2 | —

In this case, unlike , the compatibility condition can be represented in matrix form:

Ln,t = An+1[~/n - znAn

without using the spectral function W,,.

There are two methods for constructing the conservation laws by using such matrix L — A
pairs [5,9,(12]. However, we do not see how to apply those methods in case of matrices
and . In the next section, we shall use a different scheme for constructing conservation laws
from the L — A pair , and this scheme seems to be new.

4. CONSERVATION LAWS

The structure of operators (L4J15) allows us to rewrite L — A pair in form of the Lax
pair. The operator L, depends linearly on A:

L, =P, — \Qp, (18)

By = tny/ w2y = 1T% + g T, Qp = Upsr/u2 — 1771 — .

Introducing L, = Q. 1 P,, we get an equation of the form:

Lt = M. (19)

The functions A\, and A~!4,, in the second equation of can be expressed in terms of L,
and 1, by using and its consequence \~11),, = L-11,. As a result we have:

¢n,t = An¢n; (20)

where

. Vuz —1
A, = Vi, =1 ( /u% — Lty T + un,lel) _ unflTpnlen + unJrlelQ;an) .

Unp

It is important that new operators L, and A, in the L — A pair , are independent of
the spectral parameter A. For this reason, the compatibility condition can be written in the
operator form without using -function:

IA/n,t = Anzn - inAn = [Ana ZA—Jn]a (21)

i.e., now it is of the form of the Lax equation. The difference between this L — A pair and
well-known Lax pairs for the Toda and Volterra equations is that now the operators L,, and A,
are nonlocal. Nevertheless, using the definition of inverse operators being linear:

P.P'=P'P, =1, Q,0Q,'=Q,'Q,=1, (22)

by straightforward calculations we can check that holds true.
The conservation laws of equation , which are expressions of the form

prt = (T =10l k>0,

n
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can be derived from the Lax equation (21)), notwithstanding nonlocal structure of the operators
Ly, Ay, see [18]. For this we must, first of all, represent the operators L,, A, as formal series

in powers of T~
H, =Y h{PT" (23)
k<N
Formal series of this kind can be multiplied according the rule:

(anT®) (b, T7) = apbp i, T

The inverse series can be obtained by definition , for instance:

The series ﬁn has the second order:
L, = Zlff)Tk = —(/ui, — 1T? 4 Up 1 Un T + U1 U1/ U2 — 14 ...
k<2
The conserved densities pn ) of equation can be found as:
pfl) = log ln , pg“) = res ZA}Q, k>1, (24)

where the residue of formal series is defined by the rule: res H, = A, sce [18]. The

corresponding functions o' can easily be found by direct calculations.

In this way below we find the conserved densities ﬁ%k) and then we simplify in accordance

with the rule:
A = ewpl + (T — 1),
where ¢ are constant. First three densities of equation (1)) read:
@(10) = log<u721 - 1)7

PAS) = Up4+1Un—1/ U% - 17

ﬁg) = (ui - 1)(2un+2un—2\/u$b+l - 1\/%2171 -1+ U121+1U$L—1)

+un+1un 1un un+2\/ 1+un 2\/

5. DISCUSSION OF THE CONSTRUCTION SCHEME

In the previous section we have outlined the scheme for constructing the conservation laws
by example of equation . It can easily be generalized for the equations of an arbitrarily high
order:

Unt = F(Unpnrs Unsnr—1s -« Un—n1)-
Assume that such equation has an L — A pair of the form with a linear in A operator L,,
and let the operators P,, (), of have the form:

ko
R,=>Y rWT* kh<keZ, (25)
k=k1

with the coefficients 7 depending on finitely many functions w, ;. We suppose that

b= QP = S IOT

k<N
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has a positive order N > 1. If N < —1, then we change A — A~! and introduce L, = P;'Q,
of a positive order. In the case N = 0, the scheme does not work.
As \Fep, = LEqp, for any integer k, we can consider operators A, of the form:

m2
A, = Z aﬁf)[T]/\k, my < my € 7,
k=m1

where a”[T] are operators of the form (25). Then we can rewrite A, as

A, = i a[TILE =) alT".

k=my k<N

We are led to Lax equation (21]) with L, A, of form and, therefore, we can construct the
0) _

conserved densities as written above, namely, according with the only difference p
log lq(zN).

It should be remarked that the scheme can easily be applied to equation with the L — A
pair [1, (15,17)].

In a quite similar way this scheme can also be applied in the continuous case, namely, to
PDEs of the form

Uy = F(U,Ux, Uggy - - - 7urm)

We consider the operators with D, instead of T, which become the differential operators,
where D, is the operator of total z-derivative. Besides, ks > k; > 0 and the coefficients rq(f)
depend on finitely many functions wu, uy, Uz, . . .. Instead of we consider the formal series
in powers of D 1. A theory of such formal series and, in particular, the definition of the residue

were discussed in [13].
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