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RECURSION OPERATOR FOR A SYSTEM WITH
NON-RATIONAL LAX REPRESENTATION

K. ZHELTUKHIN

Abstract. We consider a hydrodynamic type system, waterbag model, that admits
a dispersionless Lax representation with a logarithmic Lax function. Using the Lax
representation, we construct a recursion operator of the system. We note that
the constructed recursion operator is not compatible with the natural Hamiltonian
representation of the system.
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1. INTRODUCTION

In the present paper we consider the so-called waterbag model [1],[2]. This hydrodynamic
type system admits a dispersionless Lax representation with a logarithmic Lax function.
Such systems have important applications in the topological field theories, see [3], [4] and
the references therein. For a better understanding of such systems one needs to know a bi-
Hamiltonian structure of a system and the corresponding recursion operator, see [5]-[7]. For
the systems admitting dispersionless Lax representation the construction of bi-Hamiltonian
structures and recursion operators is well understood in the case of a polynomial or rational
Lax function [§]-[12]. The non-rational Lax functions present a much more difficult case. In the
present paper we construct a recursion operator for the case of logarithmic Lax function. To our
knowledge, in the literature, there are no other examples of recursion operators corresponding
to a non-rational Lax function.

Let us give needed definitions. We introduce the algebra of Laurent series

A= {Z u;p' - u; are smooth functions decaying fast at inﬁnity} , (1.1)
with the Poisson bracket given by
df 0g Of dg
_ 7YY 1.2
Taking the Lax function
L=p-—mln(p—c")+In(p—c*)+---+In(p—c") (1.3)
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and using the Gel’fand-Dikii construction [13], we can write the hierarchy of integrable equations

L, ={(L")s0, L} n=12,.... (1.4)
The second equation of the hierarchy
Ly = {(L%)z0, L} (1.5)
leads to the waterbag model
) J)2
cgzﬁw((cz) +mcl—02—--~—cm+1), (1.6)
where j = 1,2,...,(m + 1). As we show, the above hierarchy admits the following recursion
operator
R = Ad, ", (1.7)
where the matrix A = (v;;) has the entries
m+1 g j 1 k 1 k
1 Cx — Cy __Cm_cm o Cr — C;
711—Cx+j2:; ) WT T e RT VAT
1 k m+l p j k i
_ k Cr — C Cr — C 4__C:r_cx
Tkk = Co mcl_k+ Z ck — i’ Thi = =k i

i=2.j#k
k1, and k,i =2,3,...,m+ 1.

We observe that the above system has an obvious Hamiltonian representation with the Hamil-
tonian operator D = J0,, where J is the matrix having one on the incidental diagonal and its
other entries are zero.

In general, if a system has a bi-Hamiltonian representation with respect to a pair of Hamil-
tonian operators D; and 152, one can construct a recursion operator R = @Q@f L Hence, one
has D, = RD;. For systems admitting dispersionless Lax representation one can generate the
whole hierarchy of Hamiltonian operators D, = R"D; [14]. It turns out that in our case, if
we apply the recursion operator R to the Hamiltonian operator D, the resulting operator is
not Hamiltonian. Thus, the recursion operator R and the Hamiltonian operator D are not
compatible. For further studies, it is an interesting open question to find a bi-Hamiltonian
representation of system (|1.6)).

The paper is organized as follows. In Section 2 we give a construction of the recursion
operator of system for general m. In Section 3 we give examples of system ((1.6) and the
corresponding recursion operator for m = 1,2, 3.

2. EVALUATION OF RECURSION OPERATOR

Let us introduce new variables
cl=u and v l'=c'-¢, j=2.3,...(m+1). (2.1)
In terms of the new variables, system (1.6 becomes

Up = Uy + V2 4. 00

v} = v'uy + (u—v')ol (2.2)
ot = 0"y + (u— ™)

System (2.2]) admits a Lax representation
Ly = {(L%)s1, L} (2.3)
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with Lax function

vl v? ™
L=p4+u+hn|(l+—)+n{(l+—)+--+In{1+—). (2.4)
p p p
Thus, we have the whole hierarchy of the symmetries for the system (2.2)) given by
Ltn - {(Ln)>1,[/} n = 1,2,... (25)

Let us construct a recursion operator for the above hierarchy of the symmetries. We construct
the recursion operator by direct analysis of the Lax representation.

Let
L' =a,p" +anp" '+ .. arp+ag+aip ... (2.6)
The next two lemmata provide some relations between coefficients of L™ and
1 oM
+v! p+um

Lemme 2.1. For each k =2,3...m and each n = 2,3, ... the identity

n

> (D Vah) =0 ey, (2.7)

i=1
holds true.

Proof. Using (2.6 we can write the equation (2.5)) as

1 m . N
U, + e +"'+L:(nap”_1+---+2a2p+a1)(u+ Ve NI Yz )
n p+vl p+Um n z p+?}1 p+/Um
vl o™
— <an7xpn + P + a2’1_p2 + a17m) (1 _—_— — c .. — —>
p(p+vt) p(p +vm)
Multiplying the above equation by (p +wv1)(p +v2) ... (p+ vm) and then substituting p = —uvy,
we obtain
vf :Z(_l)i s (0F)i! k:_'_z a0 (o)

i=1

That is,

T~ (Z(—l)i_lai(vk)i) .

Lemme 2.2. For eachn =2.,3,..., the identity ay = 0, 'uy, holds true.

Proof. Lax equation ([2.5)) can be written as
Ly, = —{(L")<o, L} n=1,2...
Using ([2.6)) and collecting coefficients of zero power of p in the above equations we have u;, =
ag, - ]
The above lemmata allow us to express the coefficients of (L >”0+ Y )p and (L(>"0Jr Y), in terms of
coefficients of L%, and L, .
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Lemme 2.3. Let

1 n+1 n—
n+ﬂéﬁhzw]+m+w+m (2.8)
Then
m r—1 m
by =a,_1 + Z (") Ha,_; + Z(Uk)_rax_lvk, (2.9)
k=1 j=0 k=1
where r =1,2,...n.
Let
1 (n+1) 2
L ) — Ay + - + dop? + dup. 2.10
n+1(>1 N P+t dop” + dip ( )
Then
m r—1 m
d, = uza, + Z (vF)y T ka,_; + Z(vk)_r_lv’;(?;lvk, (2.11)
k=1 j=0 k=1

wherer =1,2,...n.

Proof. We have

1 (n+1) n)
L >:<L L) .
n+1< >1 p >0 >0
That is

k

1 (n+1) "
— (L ) = (anp™ +---+ag) | us + =
n+1( S (anp 0) ;p‘f‘vk o

=

1

For each k = 1,...m, we expand as series in terms of p~" at p = oo and multiply with

p+ ok
(anp™ + -+ + ap). Collecting coefficients at p*, k = 1,...m, in the above identity and using
Lemma [2.1] we obtain formula (2.9). The formula (2.11)) can be obtained in the same way. [

Using the above lemmata, we find a recursion operator for the hierarchy ({2.5)).

Lemme 2.4. The recursion operator for system can be written as R = CO; 1, where C
is an (m + 1) x (m + 1) matriz. It is convenient to write matriz C' as a sum of two matrices,
C = (A+ B). Matrix A = (ayj) has the entries

Q11 = Ug;

g = vp(v) 7, J=12m

Qg1 = VL, j=1,2,....m

Qi) G+1) = (Ug — v?), j=1,2,...,m;

vy +1) = 0, P £, i, =1,2,...,m;

Matriz B = (B;;) has the entries

Bri=0; Big+n =0, Bt =0, j=1,2,...,m;

Tk — v*(v7),(v7) 7t ,
Bi+i+1) = Z . k0 ; J=12,...,m;
k=1 k4]

vl — vivd (v7) 7!

Blirn)(+1) = : i35, i,j=12...,m.

vl — vl
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Proof. Using notations of Lemma the Lax equation (2.5)) can be written as

m k m k
Yt n— Uy
?%M44‘§:§;I%z:%n—klﬂbd9 L bop - by) (um+_§:1r+vk>
k=1 k=1

! ) (2.12)
(n+ 1)(d,p™ + - - + dop® + dy) (1—Z]Jv—>

“— p(p + v¥)

We multiply the above equation by (p +v')(p+v?)...(p+v™) and substitute the expressions
for b;,d;, i = 1,2,...n, given in Lemma . Equating coefficients at p*, k = 1,2,...m, we
obtain a system of equations linear with respect to vfﬂ . k=1,2,...m. Solving the system,
we obtain the recursion operator given above. O

Remark 2.1. Let us a define vector V = (u,v',v% ... v™) and write system (2.2)) as
Vi=K(V,Va). (2.13)

By straightforward calculations we check that the constructed above operator satisfies the
criteria for recursion operators

R, = DxR — RDx, (2.14)

where Dy is the Fréchet derivative of K.

Returning back to the original variables c',...c™ ™! we obtain recursion operator ([1.7]).

3. EXAMPLES

Let us consider some examples. We give examples in variables ¢!, c?, ..., c™*!.
Example 3.1. Let us consider equation @ with m = 1. The equation becomes
c,} :clci%—c:;—c

2

2
T
_ 2.2 1 2
c;, =cc,+c,—c,

The above system admats the recursion operator

1, GG o~ Cr
€zt 2 ST 2

c —C c —C 6_1
C1—02 Cl—C2 v
T T 62_ T T
01—02 z Cl_c2

Example 3.2. Let us consider equation @ with m = 2. The equation becomes

1_ 1.1 1_ 2 3
¢, =cc,+2c, —c,—c,
2 _ 22 12 3
¢, =cc,+2c, —c,—c,
3_ 3.3 1_ 2 3
c, =c’c,+2c, —c,—c,

The above system admits the recursion operator

1 2 1 3 1 2 1 3
Cl+cm_cx+cx_cz G TG G TG
x CI_CQ CI_CS 01_62 Cl_c3
1 2 1 2 2 3 2 3
2095_096 62_2Cx_cx _|_Cx_cx _Cx_cx 8—1
- = A
01_62 Z 01—02 C2—C3 02—63
1 3 3 2 1 3 3 2
QC:B_Cx _Cm_cx CS_ZC:B_Cx Cr — C;
CI_C3 03—C2 z CI_C3 C3—C2
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Example 3.3. Let us consider equation (@ with m = 3. The equation becomes

1 3 _ 4
c=cc+3c -2 - -t
2 2 3 4
= +3ck—c2—c—cl
3 2 _ 3 _ A
&= +3c -2 - -l
4 2B A
ct=ctct+3c -2 - -t
The above system admits the recursion operator
1 2 1 3 1 4
Cl _cm_cx _Cx_cx _Cx_cx
z ol _ 2 Ll _ 3 ol _ A
1 2 1 2 2 3 2 _ 4
3Cw_cx C2_3Ca:_car _Ca:_caz _Cx_cx
cl—c2 F cl —c2 c2—c3 c2—ct o
jod d-d o, ded d-d ¥
J— C [— —
Al — 3 3 — 2 z ol — 3 3 — A
1 4 4 _ 2 4 _ .3 4 1
Scm_cx _cz_cx _Cx_cm C4_3Cr_cm
cl — ct— 2 ct—c3 v ct—ct
4 ;
c, — ¢
E A ) 0 0
— ¢l — ¢
Jj=2
4 2
c.—¢cl
X €T
0 E CR— 0 0
J=2,j7#2 _
+ ) o,
3 — ¢
0 0 g — 0
3 _ cJ
J=2,J#3
4 4 ;
c, —¢c
0 0 0 g ==
e A=
J=2,j74
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