УДК 517.5

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА В ВЫПУКЛЫХ ОБЛАСТЯХ ИЗ \mathbb{C}^n

А.С. КРИВОШЕЕВ

Аннотация. В работе изучаются инвариантные относительно операции дифференцирования подпространства пространств функций, аналитических в выпуклых областях \mathbb{C}^n . Получен критерий аналитического продолжения функций из произвольных замкнутых главных инвариантных подпространств, допускающих спектральный синтез, в произвольных ограниченных выпуклых областях.

Ключевые слова: инвариантные подпространства, аналитическое продолжение, целая функция, оператор свертки.

Эта статья является продолжением работы [40]. Мы сохраняем здесь все обозначения работы [40], нумерация параграфов, теорем, формул и т.д. данной работы является продолжением нумерации из работы [40].

4. Критерии продолжения

В этом параграфе мы покажем, что полученные выше достаточные и необходимые условия аналитического продолжения функций из главных инвариантных подпространств в действительности являются эквивалентными и дают, таким образом, критерий продолжения. Кроме того, приведем также и ряд других равносильных им условий.

Прежде всего докажем три вспомогательных утверждения.

Лемма 11. Пусть $g, \psi_0 - n$ люрисубгармонические функции в \mathbb{C}^n , постоянная $d_0 > 0$ и выпуклый компакт $L \subset \mathbb{C}^n$ таковы, что

$$\psi_0(z) + g(z) \leqslant d_0 + H_L(z), \quad z \in \mathbb{C}^n. \tag{50}$$

Тогда существует непрерывная плюрисубгармоническая в \mathbb{C}^n функция $\psi \geq \psi_0$ такая, что

$$h_{\psi+q}(z) \leqslant H_L(z), \quad z \in \mathbb{C}^n.$$

Доказательство. Положим

$$\psi(z) = \sigma_n^{-1} \int_{B(0,1)} \psi_0(z+w) d\sigma(w).$$

Поступила 14 июля 2009 г.

A.S. Krivosheyev, The invariant subspaces in convex domains in \mathbb{C}^n .

[©] КРИВОШЕЕВ А.С. 2009.

Функция $\psi(z)$ — плюрисубгармоническая и по неравенству о среднем для субгармонических функций имеем: $\psi(z) \ge \psi_0(z), z \in \mathbb{C}^n$ и

$$\psi(z) + g(z) \leqslant \sigma_n^{-1} \int_{B(0,1)} \psi_0(z+w) d\sigma(w) + \sigma_n^{-1} \int_{B(0,1)} g(z+w) d\sigma(w) \leqslant$$

$$\leqslant \sup_{w \in B(z,1)} (\psi_0(w) + g(w)) \leqslant d_0 + \sup_{w \in B(z,1)} H_L(w), \quad z \in \mathbb{C}^n.$$
(51)

Последняя оценка здесь следует из (50). По лемме 4 для любого $\beta>0$ существует $\delta>0$ такое, что выполнено неравенство

$$\underline{\sup}_{w \in B(z,\delta|z|)} H_L(w) \leqslant H_L(z) + \beta|z|, \quad z \in \mathbb{C}^n.$$

Выберем T>0 так, что $T\delta>1$. Тогда в силу (51) получаем:

$$\psi(z) + g(z) \le d_0 + H_L(z) + \beta |z|, \quad |z| > t.$$

Отсюда с учетом непрерывности опорной функции компакта и определения верхнего индикатора имеем:

$$h_{\psi+q}(z) \leqslant H_L(z) + \beta |z|, \quad z \in \mathbb{C}^n.$$

Поскольку $\beta>0$ произвольно, то это дает нам требуемую оценку. Остается установить непрерывность $\psi(z)$. Фиксируем $z_0\in\mathbb{C}^n$. В силу плюрисубгармоничности функции $\psi_0(z)$ величина

$$c_1 = \sigma_n^{-1} \int_{B(0,2)} \psi_0(z_0 + w) d\sigma(w)$$

конечна. Выберем число c_2 так, что $\psi_0(w)\leqslant c_2$ для всех $w\in B(z_0,4)$. Пусть $z\in B(z_0,1)$. Тогда

$$c_1 = \sigma_n^{-1} \int_{B(z_0,2)} \psi_0(w) d\sigma(w) = \sigma_n^{-1} (\int_{B(z,1)} \psi_0(w) d\sigma(w) +$$

+
$$\int_{B(z_0,2)\backslash B(z,1)} \psi_0(w)d\sigma(w) \leq \sigma_n^{-1} \int_{B(z,1)} \psi_0(w)d\sigma(w) + c_2(2^{2n} - 1).$$

Следовательно,

$$\psi(z) = \sigma_n^{-1} \int_{B(z,1)} \psi_0(w) d\sigma(w) \ge c_1 - c_2(2^{2n} - 1) = c_3, \quad z \in B(z_0, 1).$$
 (52)

Пусть $z_1, z_2 \in B(z_0, 1)$ и $\rho = |z_1 - z_2|$. Пользуясь монотонностью среднего значения субгармонической функции в шаре, получаем неравенства:

$$\psi(z_1) = \sigma_n^{-1} \int_{B(z_1, 1)} \psi_0(w) d\sigma(w) \leqslant ((1 + \rho)^{2n} \sigma_n)^{-1} \int_{B(z_1, 1 + \rho)} \psi_0(w) d\sigma(w) \leqslant$$

$$\leq ((1+\rho)^{2n}\sigma_n)^{-1} \int_{B(z_2,1)} \psi_0(w) d\sigma(w) + \frac{(1+\rho)^{2n}-1}{(1+\rho)^{2n}} c_2 \leq (1+\rho)^{-2n} \psi(z_2) + \frac{(1+\rho)^{2n}-1}{(1+\rho)^{2n}} c_2.$$

Отсюда с учетом (52) имеем:

$$\psi(z_1) - \psi(z_2) \leqslant \left(\frac{1}{(1+\rho)^{2n}} - 1\right)\psi(z_2) + \frac{(1+\rho)^{2n} - 1}{(1+\rho)^{2n}}c_2 \leqslant$$
$$\leqslant \left(\frac{1}{(1+\rho)^{2n}} - 1\right)c_3 + \frac{(1+\rho)^{2n} - 1}{(1+\rho)^{2n}}c_2 \leqslant c_4\rho.$$

Аналогичная оценка получится, если z_1 и z_2 поменять местами. Таким образом, верно неравенство

$$\psi(z_1) - \psi(z_2) \leqslant c_4|z_1 - z_2| \quad z_1, z_2 \in B(z_0, 1).$$

Лемма доказана.

Лемма 12. Пусть Θ — конус в \mathbb{C}^n с вершиной в начале координат и $S_0 \subset S$ — компактное подмножество внутренности Θ . Предположим, что $\mathbb{C}^n \setminus \Theta$ — выпуклое множество. Тогда для каждого A > 0 существует окрестность Ω_0 компакта S_0 и выпуклая положительно однородная порядка один функция ψ_0 , обладающая следующими свойствами:

- 1) $\psi_0(z) = 0, \quad \forall z \notin \Theta;$
- 2) $\psi_0(z) \ge A|z|, \quad \forall z: z/|z| \in \Omega_0;$
- 3) $\psi_0(z) \ge 0$, $\forall z \in \mathbb{C}^n$.

Доказательство. Фиксируем A>0. Пусть $\varsigma\in S_0$. Поскольку $S\subset int\ \Theta$, то для некоторого $\tau>0$ шар $B(\varsigma,\tau)$ лежит в Θ . По условию $\mathbb{C}^n\setminus\Theta$ — выпуклое множество. Следовательно, по теореме об отделимости для выпуклых множеств существует (вещественная) гиперплоскость Γ , разделяющая $B(\varsigma,\tau)$ и $\mathbb{C}^n\setminus\Theta$. Так как последнее множество является конусом с вершиной в начале координат, то гиперплоскость можно выбрать так, что она будет проходить через начало координат. Пусть

$$\Gamma = \{z : \operatorname{Re} \langle z, \lambda(\varsigma) \rangle = 0\}.$$

Меняя, если это необходимо, знак вектора $\lambda(\zeta)$, можно считать, что

$$\operatorname{Re}\langle z, \lambda(\varsigma) \rangle \leqslant 0, \quad \forall z \notin \Theta.$$
 (53)

и $\operatorname{Re}\langle z,\lambda(\varsigma)\rangle\geq 0$ для всех точек шара $B(\varsigma,\tau)$ Тогда в его центре будет выполнено неравенство $\operatorname{Re}\langle z,\lambda(\varsigma)\rangle>0$. Выберем положительное число $c(\varsigma)$ такое, что функция $\psi_{\varsigma}(z)=c(\varsigma)\operatorname{Re}\langle z,\lambda(\varsigma)\rangle$ имеет в точке ς следующую оценку снизу $\psi_{\varsigma}(\varsigma)>A=A|z|$. По непрерывности это неравенство продолжается в некоторую окрестность точки ς :

$$\psi_{\varsigma}(z) \ge A|z|, \quad z \in B(\varsigma, \delta(\varsigma)).$$
 (54)

Из покрытия компакта S_0 шарами $B(\varsigma, \delta(\varsigma)), \varsigma \in S_0$, выделим конечное подпокрытие $B(\varsigma_i, \delta(\varsigma_i)), j = 1, \ldots, p$. Положим

$$\Omega_0 = \bigcup_{j=1}^p B(\varsigma_j, \delta(\varsigma_j)), \quad \psi(z) = \max_{1 \leqslant j \leqslant p} \psi_{\varsigma_j}(z), \quad \psi(z) = \max \left\{ \psi(z), 0 \right\}.$$

Очевидно, что функция $\psi_0(z)$ является выпуклой и положительно однородной порядка один. Из определения $\psi_0(z)$ сразу следует пункт 3) утверждения леммы. Учитывая (53), получаем пункт 1). В силу же (54) и положительной однородности $\psi_0(z)$ выполнен и пункт 2). Лемма доказана.

Лемма 13. Пусть D, G — выпуклые области в $\mathbb{C}^n, D \subset G, V'$ — окрестность множества $S \cap \Xi \setminus int \Theta_D$ (где $\Xi = \Xi(D,G)$). Тогда $S_0 = (\partial V' \setminus \Theta_D) \cap S$ — компакт.

Доказательство. Достаточно показать, что S_0 — замкнутое множество. Пусть последовательность $\{\xi_m\} \subset S_0$ сходится к точке ξ_0 . Тогда $\xi_0 \in \partial V' \cap S$. Если при этом $\xi_0 \notin \Theta_D$, то $\xi_0 \in S_0$ и все доказано. Предположим, что $\xi_0 \in \Theta_D$.

Возможны два случая: $\xi_0 \in int \ \Theta_D$ и $\xi_0 \in \partial \Theta_D$. В первом из них элементы последовательности $\{\xi_m\}$, начиная с некоторого номера, также принадлежали бы $int \ \Theta_D \subset \Theta_D$, что противоречит определению множества S_0 . Пусть реализуется второй случай. Тогда верно включение $\xi_0 \in \partial \Theta_D \cap \Theta_D$. Поскольку $\Theta_D \subset \Xi$, то верно также и включение $\xi_0 \in (\Xi \setminus int \ \Theta_D) \cap S$, которое означает, что $\xi_0 \in V'$. Но это невозможно, т.к. $\xi_0 \in \partial V'$. Полученное противоречие завершает доказательство.

Сформулируем и докажем теперь критерий аналитического продолжения функций из главных инвариантных подпространств в произвольных выпуклых областях в \mathbb{C}^n . Точнее говоря, мы приведем сразу несколько критериев.

Теорема 3. Пусть D- выпуклая область в \mathbb{C}^n , W- нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез; G- выпуклая подобласть D(W), содержащая D, такая, что множество $S \cap \Xi \setminus int \Theta_D$ замкнуто. Следующие утверждения эквивалентны:

- а) Каждая функция из W аналитически продолжается в область G и аппроксимируется там линейными комбинациями элементов из E(W).
- б) Для любой точки $\varsigma \in S \setminus \Xi$ и любого номера т существует плюрисубгармоническая функция $\psi_{\varsigma,m}$ такая, что

$$h_{u_{\varsigma,m}}(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}, \quad \underline{h}_{u_{\varsigma,m}}(\varsigma) \ge H_{K_m}(\varsigma),$$

 $\varepsilon \partial e \ u_{\varsigma,m} = \ln |F_W| + \psi_{\varsigma,m}.$

- в) Для любого компакта $S_0 \subset S \setminus \Xi$ и любого номера т существуют плюрисубгармоническая в \mathbb{C}^n функция ψ , окрестность Ω компакта S_0 и постоянная T > 0 такие, что верны неравенства:
- 1) $h_u(z) < H_D(z)$, $z \in \mathbb{C}^n \setminus \{0\}$, $z \partial e \ u = \ln |F_W| + \psi$;
- 2) $u(z) \ge H_{K_m}(z)$ для всех $z \in \mathbb{C}^n$, удовлетворяющих условиям: $z/|z| \in \Omega, |z| \ge T$.
- г) Для каждой окрестности V множества $S \cap \Xi \setminus int \Theta_D$ найдется окрестность V_1 этого же множества, компактно лежащая в V, для которой выполнено следующее: для любого номера m существует окрестность V' множества $S \cap \Xi \setminus int \Theta_D$, лежащая в V_1 , такая, что для каждого $\varsigma \in (\partial V' \setminus \Theta_D) \cap S$ найдется плюрисубгармоническая функция $\psi_{\varsigma,m}$, удовлетворяющая условиям:

$$h_{u_{\varsigma,m}}(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}, \quad \underline{h}_{u_{\varsigma,m}}(\varsigma) \ge H_{K_m}(\varsigma),$$

 $e \partial e \ u_{\varsigma,m} = \ln |F_W| + \psi_{\varsigma,m}.$

Доказательство. а) \Rightarrow б). Фиксируем $\varsigma \in S \setminus \Xi$ и номер m. Если имеет место утверждение а), то по теореме 2 существуют плюрисубгармоническая функция ψ , номер p и числа $d, R, \delta > 0$ такие, что выполнены неравенства 1) и 2) из этой теоремы. Положим $\psi_{\varsigma,m} = \psi$. Тогда в силу определения верхнего индикатора и неравенства 1) получаем:

$$h_{u_{\varsigma,m}}(z) \leqslant H_{K_p} < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}$$

С другой стороны, из неравенства 2) и неравенства о среднем для субгармонических функций следует, что $\underline{h}_{u_{\varsigma,m}}(\varsigma) \geq H_{K_m}(\varsigma)$. Таким образом, утверждение б) выполнено.

- б) \Rightarrow в). Поскольку $G \subset D(W)$, то из определений множеств Ξ , Θ_D и равенства (2) следует вложение $\Delta(F_W) \cup \Theta_D \subset \Xi$. Поэтому любой компакт S_0 из множества $S \setminus \Xi$ не имеет общих точек с $\Delta(F_W) \cup \Theta_D$. Теперь остается применить следствие из леммы 10.
- в) \Rightarrow б). Фиксируем $\varsigma \in S \setminus \Xi$ и номер m. Положим $S_0 = \{\varsigma\}$. Согласно утверждению в) существует плюрисубгармоническая функция ψ , обладающая свойствами 1) и 2) из этого утверждения. Пусть $\psi_{\varsigma,m} = \psi$. Тогда свойство 1) дает нам первое неравенство из утверждения б), а свойство 2) второе неравенство, как и при доказательстве первой импликации.
- б) \Rightarrow г). Пусть V произвольная окрестность множества $S \cap \Xi \setminus int \Theta_D$. По условию оно замкнуто. Поэтому найдется его окрестность V_1 , компактно лежащая в V. Фиксируем m и положим $V' = V_1$. Остается заметить, что любая точка $\xi \in (\partial V' \setminus \Theta_D) \cap S$ принадлежит множеству $S \setminus \Xi$.
- г) \Rightarrow а). Пусть имеет место утверждение г). Достаточно доказать, что в этом случае выполнены все условия теоремы 1. Пусть V произвольная окрестность множества $\Xi \cap S$. Тогда V является также окрестностью $S \cap \Xi \setminus int \Theta_D$. Прежде всего, построим компакт $X \subset V$, существование которого требуется в теореме 1.

Пусть V_1 — окрестность множества $S \cap \Xi \setminus int \Theta_D$ из утверждения Γ), компактно лежащая в V. Поскольку $\Delta(F_W)$ замкнуто, то замкнутым будет и множество $\Delta(F_W) \setminus V_1$. По условию $G \subset D(W)$, поэтому в силу соотношения (2) множество $\Delta(F_W)$ лежит в Ξ . Следовательно, верно вложение $\Delta(F_W) \setminus V_1 \subset int\Theta_D$. Пусть V_2 — окрестность множества $\Delta(F_W) \setminus V_1$, компактно лежащая в $int\Theta_D$.. Тогда $V_3 = V_1 \cup V_2$ — окрестность множества $\Delta(F_W)$, которая с учетом вложения $int\Theta_D \subset V$ компактно принадлежит V. Выберем $\tau > 0$ так, что τ — вздутие V_3^{τ} все еще компактно лежит в V, и положим $X = \overline{V_3^{\tau}}$.

Фиксируем номер m и число $\varepsilon > 0$. Мы должны построить открытое множество U, плюрисубгармоническую в \mathbb{C}^n функцию $\psi(z)$ и выбрать постоянную R > 0, номер p, для которых выполнены пункты i)-iiii) из теоремы 1. Начнем с построения функции $\psi(z)$. Пусть V' — окрестность множества $S \cap \Xi \setminus int\Theta_D$ из утверждения Γ), лежащая в V_1 . Как и выше, найдем окрестность V'' множества $\Delta(F_W) \setminus V'$, которая компактно лежит в $int\Theta_D$. При этом $V_0 = V' \cup V''$, также как и V_3 будет окрестностью $\Delta(F_W)$. Кроме того, очевидно, можно считать, что V'', а вместе с ним и V_0 , лежит в V_3 .

По лемме 13 множество $S_0 = (\partial V' \setminus \Theta_D) \cap S = (\partial V_0 \setminus \Theta_D) \cap S$ — компакт. Как уже отмечалось S_0 является подмножеством $S \setminus \Xi$, а потому не имеет общих точек с объединением $\Delta(F_W) \cup \Theta_D$. Тогда по следствию из леммы 10 существуют плюрисубгармоническая в \mathbb{C}^n функция ψ_1 , окрестность Ω_0 компакта S_0 и постоянная S_0 такие, что

$$h_{u_1}(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\},$$
 (55)

где $u_1 = \ln |F_W| + \psi_1$, и

$$u_1(z) \ge H_{K_m}(z), \forall z : z/|z| \in \Omega_0, \quad |z| \ge T_1.$$
 (56)

Положим $S_1 = (\partial V_0 \setminus \Omega_0) \cap S$. Тогда S_1 — компакт, который лежит в $int\Theta_D$. Действительно, так как Ω_0 — окрестность S_0 , то по определению множества S_0 верно вложение $S_1 \subset \Theta_D$. Предположим, что пересечение $S_1 \cap \partial \Theta_D$ не пусто и $\xi \in S_1 \cap \partial \Theta_D$. Возможны два варианта: $\xi \in \Theta_D$ и $\xi \notin \Theta_D$. Если $\xi \in \Theta_D$, то $\xi \in (\Xi \setminus int\Theta_D) \cap S \subset V'$, что невозможно, т.к. $\xi \in \partial V_0$. Если же $\xi \notin \Theta_D$, то $\xi \in S_0 \subset \Omega_0$, что также невозможно по определению S_1 .

Компакт S_1 не имеет общих точек с $\Delta(F_W)$, поскольку V_0 — окрестность множества $\Delta(F_W)$. Пусть f — некоторый ненулевой элемент пространства $I_W \subset P_D$. Тогда f делится на F_W и

$$\ln |f(z)| \leq d_1 + H_L(z), \quad z \in \mathbb{C}^n,$$

где L — выпуклый компакт в D и D_1 — положительная постоянная. Следовательно, по лемме 9 для каждого $\alpha>0$ существуют плюрисубгармоническая функция ψ_2 , окрестность Ω_1 компакта S_1 и постоянные $a_0, T_2>0$ такие, что выполнены следующие неравенства:

$$u_2 \ge -a_0|z|, forallz: z/|z| \in \Omega_1, |z| \ge T_2,$$
 (57)

$$u_2(z) \leqslant d_1 + H_L(z) + \alpha |z|, \quad z \in \mathbb{C}^n,$$

где $u_2 = \ln |F_W| + \psi_2$. Выберем положитильное α так, что α — вздутие L^{α} компактно лежит в D. Тогда из последнего неравенства получаем:

$$h_{u_2}(z) \leqslant H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}.$$
 (58)

Поскольку S_1 — компакт в $int\Theta_D$ и $\mathbb{C}^n\setminus\Theta_D$ — выпуклое множество, то по лемме 12 существует окрестность Ω_2 компакта S_1 и плюрисубгармоническая функция ψ_0 порядка один и конечного типа, обладающая свойствами:

$$\psi_0(z) = 0 \forall z \notin \Theta_D; \tag{59}$$

$$\psi_0(z) \ge A|z| \ge H_{K_m}(z) + a_0|z| \quad \forall z : z/|z| \in |\Omega_2,$$
 (60)

где $A=\sup_{\xi\in B(0,1)}H_{K_m}(\xi)+a_0$. Положим $\psi_2'=\psi_2+\psi_0$ и $\Omega_2'=\Omega_1\cap\Omega_2$. Из (58), (59) и определения множества Θ_D следует, что

$$h_{u_2'}(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\},$$

$$(61)$$

где $u_2' = \ln |F_W| + \psi_2'$. Кроме того, в силу (57) и (60) получаем:

$$u_2'(z) \ge H_{K_m}(z) \quad \forall z : z/|z| \in \Omega_2', |z| \ge T_2.$$
 (62)

Пусть

$$\psi(z) = \max\{\psi_1(z), \psi_2'\} + c, \quad z \in \mathbb{C}^n,$$

где c — положительная постоянная, которую мы выберем ниже. Положим еще $\Omega = \Omega_0 \cup \Omega_2'$ и $T = \max\{T_1, T_2\}$. Тогда согласно (55) и (61) имеем:

$$h_u(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\},$$
 (63)

где $u = \ln |F_W| + \psi$, а в силу (56) и (62) верно неравенство

$$u(z) \ge H_{K_m}(z) \quad \forall z : z/|z| \in \Omega, |z| \ge T. \tag{64}$$

Учитывая (63) и лемму 11, можно считать, что $\psi(z)$ — непрерывная плюрисубгармоническая функция.

Перейдем теперь к построению открытого множества U, существование которого требуется в теореме 1. Как уже отмечалось выше, V_0 является окрестностью $\Delta(F_W)$. Поэтому, согласно определению $\Delta(F_W)$, найдется R'>0 такое, что множество $N(W)\setminus V_0'$ лежит в шаре B(0,R'). Здесь V_0' — конус с вершиной в начале координат, порожденный $V_0\cap S$, т.е. $V_0'=\{z:z=t\xi,\xi\in V_0\cap S,t>0\}$. Положим $U=V_0'\cup B(0,R')$. В силу выбора числа R' для множества U выполнен пункт і) в теореме 1. Из определений множеств X и V_0' следует, что для некоторого R>R' и каждого $z\in U[\varepsilon]\setminus B(0,R)$ точка z/|z| принадлежит X. Это дает нам пункт іі). Кроме того, для всех достаточно больших по модулю $z\in U[\varepsilon]\setminus (U\cup B(0,T))$ точка z||z| принадлежит Ω . Поэтому для таких z выполнено неравенство (64), а вместе с

ним и пункт ііі). Чтобы обеспечить выполнение пункта ііі) на остальной (ограниченной) части множества $U[\varepsilon] \setminus U$, нужно лишь подобрать подходящую постоянную c > 0 в определении $\psi(z)$. Это можно сделать, поскольку $\psi(z)$ непрерывна, а F_W не имеет нулей вне U, а потому $\ln |F_W|$ непрерывна вне U. Наконец, увеличивая при необходимости число R, из неравенства (63) нетрудно получить пункт іііі) с некоторым номером p (для этого, как и во введении, достаточно воспользоваться теоремой Хартогса о верхнем пределе для семейств субгармонических функций). Теорема доказана.

Замечания. 1. Достаточным условием (но не необходимым) замкнутости множества $S \cap \Xi \setminus int\Theta_D$ является непрерывность функции $H_D(z)$ на этом множестве. Действительно, пусть последовательность $\{z_k \subset S \cap \Xi \setminus int\Theta_D\}$ сходится к z_0 . Тогда в силу непрерывности H_D , полунепрерывности снизу H_G и вложения $D \subset G$ имеем: $H_G(z_0) \geq H_D(z_0) = \lim_{k \to \infty} H_D(z_k) = \lim_{k \to \infty} H_G(z_k) \geq H_G(z_0)$.) Это будет, например, если D — ограниченная область. В случае комплексной плоскости множество $S \cap \Xi \setminus int\Theta_D$ всегда замкнуто (см. [26, лемма 7]).

- **2.** Как видно из доказательства импликации $r)\Rightarrow a$), в качестве еще одного эквивалентного утверждения в теореме 3 можно было взять утверждение, составленное из условий теоремы 1.
- 3. В случае, когда множество $S \cap \Xi \setminus int\Theta_D$ пусто (и тогда согласно равенству (2) и лемме 2 необходимо выполнено вложение $\Delta(F_W) \subset int\Theta_D$), утверждение г) не содержит никаких требований. Таким образом, в этом случае продолжение функций из инвариантного подпространства в область G осуществляется без каких-либо дополнительных условий. При этом упрощается доказательство импликации Γ жа). Уже нет необходимости в построении функции ψ_1 . Нужно положить $V_0 = V''$, где V'' окрестность множества $\Delta(F_W)$, компактно лежащая в $int\Theta_D$, и $S_1 = \partial V_0 \cap S$. Далее функция ψ определяется по формуле $\psi(z) = \psi_2'(z) + c$. Имеет место даже более сильное, чем импликация Γ \Rightarrow а), утверждение.

Следствие 1. Пусть D- выпуклая область в \mathbb{C}^n , W- нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез. Предположим, что $\Delta(F_W) \subset int\Theta_D$. Тогда каждая функция из W продолжается до целой функции и аппроксимируется в \mathbb{C}^n линейными комбинациями элементов из E(W).

Доказательство. Вложение $\Delta(F_W) \subset int\Theta_D$ означает, что область D(W) совпадает со всем пространством \mathbb{C}^n . Положим $G = \mathbb{C}^n$. Тогда $\Xi = \Theta_D$. Это равенство не влечет за собой пустоту множества $S \cap \Xi \setminus int\Theta_D$. Несмотря на это, все условия теоремы 1 будут все-таки выполнены. Доказательство этого факта проводится по схеме доказательства импликации $r) \Rightarrow a$) в теореме 3 с упрощениями, которые указаны в замечании 3. Тогда по теореме 1 будет выполнено утверждение следствия.

Следствие 2. Пусть D- выпуклая область в \mathbb{C}^n , W- нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез. Предположим, что Θ_D- открытое множество. Для того чтобы каждая функция из W продолжалась до целой функции и аппроксимировалась в \mathbb{C}^n линейными комбинациями элементов из множества E(W), необходимо и достаточно, чтобы имело место вложение $\Delta(F_W)\subset\Theta_D$.

Доказательство. Вытекает из леммы 2 и следствия 1.

Во всех предыдущих работах по проблеме условия продолжения функций из инвариантного подпространства W формулировались в терминах существования некоторой целой функции из множества I_W с подходящими асимптотическими оценками снизу (в частном случае, когда W — пространство решений однородного уравнения свертки, в роли такой функции выступала характеристическая функция оператора свертки). Мы также приведем подобные традиционные условия. Но прежде докажем один вспомогательный результат, касающийся аппроксимации плюрисубгармонических функций логарифмом модуля целой и основанный на результате работы Юлмухаметова Р.С. [39].

Лемма 14. Пусть F — целая функция в \mathbb{C}^n порядка не выше один (не обязательно конечного типа при порядке один), ψ — плюрисубгармоническая функция, число d > 0 и выпуклый компакт $L \subset \mathbb{C}^n$ таковы, что

$$u(z) \leqslant d + H_L(z), hspace5mmz \in \mathbb{C}^n,$$

где $u = \ln |F| + \psi$. Тогда существует целая функция экспоненциального типа φ , обладающая следующими свойствами:

- 1) φ/F целая функция;
- 2) $h_{\varphi}(z) \leqslant H_L(z), z \in \mathbb{C}^n$;
- 3) Для любой точки $\varsigma \in S$ существует последовательность $\{z_k\} \in \Phi_0(\varsigma)$ такая, что

$$\lim k \to \infty |z_k|^{-1} |\ln |\varphi(z_k)| - u(z_k)| = 0.$$

Доказательство. Согласно условию леммы существуют постоянные A,B,C,D>0 такие, что для $\rho=1+1/16$ и всех $z\in\mathbb{C}^n$

$$\psi(z) + \ln|F(z)| \leqslant A + B|z|^{\rho}, \quad \ln|F(z)| \leqslant C + D|z|^{\rho}.$$

Тогда по лемме 7 для некоторых a, b > 0 будет выполнено неравенство:

$$\psi(z) \leqslant a + b|z|^{\rho}, \quad z \in \mathbb{C}^n.$$

Этого достаточно для применения теоремы 3 из работы [39] к функции ψ . Согласно этой теореме найдется целая функция $\tilde{\varphi}$, обладающая свойством

$$|\ln|\tilde{\varphi}(z)| - \psi(z)| \leqslant c(1+|z|)^{4/5+1/10}, \quad z \in \mathbb{C}^n \setminus E, \tag{65}$$

где E — множество в \mathbb{C}^n , которое может быть покрыто системой шаров $B(y_i, r_i), i \geq 1$, так, что $r_i \leqslant |y_i|/2, i \geq 1$,

$$\sum_{R/2 \leqslant |y_i| \leqslant R} r_i^{2n-1} \leqslant \beta \left(\frac{R^{2n-1}}{\ln(R+e)} \right), \quad \forall R > 0,$$
 (66)

и β, c — некоторые положительные постоянные (оценка $r_i \leq |y_i|/2$ отсутствует в формулировке цитируемой теоремы, однако, она используется при построении системы шаров $B(y_i, r_i)$). Кроме того, согласно соотношению (16) из работы [39] для функции $\tilde{\varphi}$ имеет место оценка сверху:

$$\ln|\tilde{\varphi}(z)| \leqslant \psi'(z) + c_1(1+|z|)^{2\gamma/3}, \quad z \in \mathbb{C}^n, \tag{67}$$

где $c_1 > 0, \, \gamma = 7/5\rho$ и

$$\psi'(z) = \int_{B(0,1)} \psi(z + (1+|z|)^{1-\rho/5}\xi)\alpha(|\xi|^2)d\sigma(\xi), \tag{68}$$

а $\alpha(t)$ — неотрицательная бесконечно дифференцируемая на вещественной оси функция, равная нулю вне интервала (0,1) и такая, что

$$\omega_n \int_{1}^{0} \alpha(t^2) t^{2n-1} dt = 1, \tag{69}$$

 ω_n — площадь поверхности единичной сферы в $\mathbb{C}^n = \mathbb{R}^{2n}$.

Положим $\varphi = F\tilde{\varphi}$. Тогда φ/F — целая функция. Докажем, что φ имеет экспоненциальный тип. Фиксируем $z \in \mathbb{C}^n$. В силу неравенства о среднем для субгармонической функции $q(\varsigma) = \ln |F(z+(1+|z|^{1-\rho/5})\varsigma)|$ имеем:

$$\ln|F(z)| = q(0) \leqslant \frac{1}{\omega_n t^{2n-1}} \int_{S(0,t)} q(\varsigma) d\omega(\varsigma), t > 0,$$

где $d\omega$ — стандартная поверхностная мера в $\mathbb{C}^n=\mathbb{R}^{2n}$. Отсюда с учетом (69) получаем оценку

$$\ln|F(z)| \leqslant \int_{B(0,1)} q(\xi)\alpha(|\xi|^2)d\sigma(\xi).$$

Вместе с (67) и (68) это дает нам неравенство:

$$\ln |\varphi(z)| \leq \psi'(z) + c_1(1+|z|)^{2\gamma/3} + \int_{B(0,1)} q(\xi)\alpha(|\xi|^2)d\sigma(\xi) =$$

$$= \int_{B(0,1)} \psi(z + (1+|z|)^{1-\rho/5}\xi) + \ln|F(z + (1+|z|^{1-\rho/5})\xi)|\alpha(|\xi|^2)d\sigma(\xi) +$$

$$+c_1(1+|z|)^{2\gamma/3} = \int_{B(0,1)} u(z+(1+|z|)^{1-\rho/5}\xi)\alpha(|\xi|^2)d\sigma(\xi) + c_1(1+|z|)^{2\gamma/3}, \quad z \in \mathbb{C}^n.$$

Пусть m>0 такое, что $\sup_{w\in S} H_L(w)\leqslant m$. Тогда имеет место неравенство $H_L(w)\leqslant m|w|,$ $w\in\mathbb{C}^n$. Поэтому из предыдущего и оценки на u в условии леммы получаем:

$$\ln |\varphi(z)| \leqslant d \int_{B(0,1)} \alpha(|\xi|^2) d\sigma(\xi) +$$

+
$$\sup_{w \in B(z+(1+|z|)^{1-\rho/5}} m|w| \int_{B(0,1)} \alpha(|\xi|^2) d\sigma(\xi) + c_1(1+|z|)^{2\gamma/3}, \quad z \in \mathbb{C}^n.$$

Поскольку $1 - \rho/5 < 1$ и $2\gamma/3 = 14\rho/15 < 1$, то отсюда следует, что

$$\ln |\varphi(z)| \leq a' + b'|z|, \quad z \in \mathbb{C}^n,$$

где a',b' — некоторые положительные постоянные. Таким образом, φ — целая функция экспоненциального типа. Согласно определению индикатора получаем: $h_{\varphi}(z) \leqslant b'|z|$, $z \in \mathbb{C}^n$. Покажем, что выполнен пункт 2) из утверждения леммы. Предположим, что в некоторой точке z_0

$$h_{\varphi}(z_0) > H_L(z_0). \tag{70}$$

В силу положительной однородности индикатора и опорной функции можно считать, что z_0 принадлежит сфере S. Учитывая непрерывность опорной функции ограниченного множества, выберем ε, δ' так, что

$$h_{\varphi}(z_0) > H_L(z) + 19\varepsilon, \quad z \in B(z_0, 4\delta').$$
 (71)

Согласно определению функции h_{φ} найдем последовательность точек x_k , сходящуюся к z_0 , и неограниченную возрастающую последовательность положительных чисел $\{t_k\}$, для которых выполнены неравенства

$$ln |\varphi(t_k x_k)|/t_k \ge h_{\varphi}(z_0) - \varepsilon, \quad k = 1, 2, \dots$$
(72)

По свойству индикаторов (см., например, [1]) существуют постоянные $\delta \in (0, \delta')$ и T > 0 такие, что верна оценка:

$$ln |\varphi(tz)|/t \leqslant h_{\varphi}(z_0) + \varepsilon, \quad z \in B(z_0, 8e\delta), t \ge T.$$
(73)

Очевидно, можно считать, что $\delta < 1/30$. Выберем номер k_0 из условий $|x_k - z_0| < \delta$, $t_k \geq T$ и $t_k > R_0$ для всех $k \geq k_0$, где $R_0 > 0$ удовлетворяет неравенству

$$\beta/\ln(R_0+e) < (\delta/6)^{2n-1}$$
.

Фиксируем $k \geq k_0$. Через J_k обозначим совокупность всех индексов i, для которых шар $B(y_i, r_i)$ пересекает множество $B(t_k x_k, 3\delta t_k) \setminus B(t_k x_k, 2\delta t_k)$. Пусть $M_i, i \in J_k$, — площадь центральной проекции S_i шара $B(y_i, r_i)$ на сферу $S(t_k x_k, 3\delta t_k)$ (S_i состоит из точек $\xi \in S(t_k x_k, 3\delta t_k)$ таких, что луч $\lambda = t_k x_k + \alpha \xi$, $\alpha > 0$, пересекает $B(y_i, r_i)$). Покажем, что общая площадь проекций $\sum_{i \in J_k} M_i$ меньше, чем площадь сферы $S(t_k x_k, 3\delta t_k)$.

Пусть $i \in J_k$. Поскольку $r_i \leqslant |y_i/2|, \ \delta < 1/30,$ а шары $B(y_i, r_i)$ и $B(t_k x_k, 3\delta t_k)$ пересекаются, то верно неравенство

$$\frac{3|y_i|}{2} \ge (1 - 3\delta)t_k \ge \frac{9}{10}t_k \ge \frac{9}{10}R_0. \tag{74}$$

Тогда в силу выбора числа R_0 для $R=2|y_i|>R_0$ получаем: $r_i\leqslant \delta|y_i|/3$. Отсюда, с одной стороны, с учетом того, что не пусто пересечение $B(y_i,r_i)\cap B(t_kx_k,3\delta t_k)$, имеем:

$$88|y_i|/90 \leqslant (1 - \delta/3)|y_i| \leqslant (1 + 3\delta)t_k \leqslant 11t_k/10,\tag{75}$$

а с другой стороны, учитывая еще, что общие точки имеют шар $B(y_i, r_i)$ и множество $B(t_k x_k, 3\delta t_k) \setminus B(t_k x_k, 2\delta t_k)$ (одну из них обозначим W), для каждого $z \in B(y_i, r_i)$ получаем неравенства:

$$|z - t_z x_k| = |w - t_k x_k| - |z - w| \ge 2\delta t_k - 2r_i \ge 2\delta t_k - 2\delta |y_i|/3 \ge 2\delta t_k - 2 \cdot 9\delta t_k/(8 \cdot 3) > \delta t_k$$

Это означает, что шар $B(y_i, r_i)$ лежит вне шара $B(t_k x_k, \delta t_k)$. Следовательно, площадь M_i проекции $B(y_i, r_i)$ на сферу $S(t_k x_k, 3\delta t_k)$ не превышает площади поверхности шара с радиусом $3r_i$, т.е.

$$M_i \leqslant \omega_n(3r_i)^{2n-1}, \quad i \in J_k.$$

В силу (74) и (75) все числа $|y_i|$, $i \in J_k$, лежат на отрезке $[3t_k/5, 9t_k/8]$, который является частью отрезка $[9t_k/16, 9t_k/8]$. Поэтому с учетом выбора числа R_0 и номера k_0 согласно (66) для $R = 9t_k/8$ получаем:

$$\sum_{i \in J_k} M_i \leqslant \omega_n \sum_{R/2 \leqslant |y_i| \leqslant R} (3r_i)^{2n-1} \leqslant \omega_n \left(\frac{9\delta t_k}{8 \cdot 6}\right)^{2n-1} \leqslant \omega_n (3\delta t_k)^{2n-1}.$$

Таким образом, общая площадь проекций $S_i, i \in J_k$, меньше, чем площадь сферы $S(t_k x_k, 3\delta t_k)$, и мы можем выбрать точку $\varsigma_k \in S$ такую, что $t_k x_k + 3\delta t_k \varsigma_k \in S(t_k x_k, 3\delta t_k)$ не попадает ни в одно $S_i, i \in J_k$. Тогда по построению интервал

$$(\xi_k', \xi_k) = \{ \xi = t_k x_k + \alpha \varsigma_k : \alpha \in (2\delta t_k, 3\delta t_k) \}$$

не пересекается с шарами $B(y_i, r_i)$, $i \in J_k$, а следовательно, и с множеством E. Покажем теперь, что в одной из точек этого интервала $\varphi(z)$ имеет подходящие для нас оценки снизу. В связи с этим рассмотрим функцию $f(z) = \varphi(z)/\varphi(t_k x_k)$. Из (72) и (73) следует, что

$$\ln |f(z)| \leq 2\varepsilon t_k, \qquad z \in B(t_k x_k, 6e\delta t_k) \subset B(t_k z_0, 8e\delta t_k).$$

Тогда по лемме 6 для $\eta=1/36$ существует $\tau_k\in(2\delta t_k,3\delta t_k)$ такое, что

$$\ln |f(w_k)| \ge -(4 - \ln \eta) 2\varepsilon t_k \ge -16\varepsilon t_k$$

где $w_k = t_k x_k + \tau_k \varsigma_k$. Отсюда с учетом (72), (71), включения $w_k \in B(t_k z_0, 4\delta t_k), k \geq k_0$, и однородности опорной функции получаем оценку

$$\ln|\varphi(w_k)| \ge (h_{\varphi}(z_0) - 17\varepsilon)t_k \ge (H_L(w_k/t_k) + 2\varepsilon)t_k = H_L(w_k) + 2\varepsilon t_k, k \ge k_0. \tag{76}$$

С другой стороны, поскольку w_k лежит на интервале ξ'_k , ξ_k , а потому не содержится в E, то согласно (65) и оценке на u из условия леммы имеем:

$$\ln |\varphi(w_k)| \le u(w_k) + c(1+|w_k|)^{9/10} \le d + H_L(w_k) + c(1+|w_k|)^{9/10} \le H_L(w_k) + \varepsilon |w_k|$$

для достаточно больших номеров k. Это противоречит (76), т.к.

$$|w_k| \le t_k |z_0| + 4\delta t_k \le (1 + 2/15)t_k$$
.

Следовательно, (70) неверно и пункт 2) доказан. Остается показать, что выполнен также и пункт 3). Используя рассуждения, аналогичные тем, что были проведены выше (относительно проекций исключительных шаров $B(y_i,r_i)$ на сферу), нетрудно показать, что для каждого $m \geq 1$ найдется число R(m) > 0 такое, что для всех z с условием $|z| \geq R(m)$ на сфере S(z,|z|/m) существует точка w, не принадлежащая множеству E. Фиксируем $\varsigma \in S$ и $m \geq 1$. Для каждого номера k такого, что $R(m) \leq k < R(m+1)$, выберем точку $z_k \in S(k\varsigma,k/m)$, не принадлежащую множеству E. Легко заметить, что полученная таким образом последовательность $\{z_k\}$ принадлежит $\Phi_0(\varsigma)$. В силу же (65) выполнено соотношение

$$\lim_{k \to \infty} |z_k|^{-1} |\ln |\varphi(z_k)| - u(z_k)| = 0.$$

Лемма доказана.

Пусть D — выпуклая область, $\{K_m\}$ — последовательность выпуклых компактов, исчерпывающая ее, W — нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез. Для каждого номера m введем функцию

$$\psi_m(z) = \overline{\lim}_{\xi \to z} \sup \{ \ln |\varphi(\xi)| - \ln |F_W(\xi)| : \varphi \in I_W, \ln |\varphi(y)| \leqslant H_{K_m}(y), \forall y \}.$$

Функции $\ln |\varphi(\xi)| - \ln |F_W(\xi)|$ плюрисубгармоничны (поскольку φ принадлежит пространству I_W и потому делится на F_W), а по лемме 7 семейство в фигурных скобках ограничено на каждом компакте. Следовательно, φ_m — плюрисубгармоническая функция.

Теорема 4. Пусть D- выпуклая область в \mathbb{C}^n , W- нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез; G- выпуклая подобласть D(W), содержащая D, такая, что множество $S \cap \Xi \setminus int\Theta_D$ замкнуто. Следующие утверждения эквивалентны:

- а) Каждая функция из W аналитически продолжается в область G и аппроксимируется там линейными комбинациями элементов из E(W).
- б) Для любого компакта $S_0 \subset S \setminus \Xi$ и любого номера т существует целая функция $\varphi \in I_W$ такая, что

$$h_{\varphi}(\varsigma) \ge H_{K_m}(\varsigma), \quad \varsigma \in S_0.$$
 (77)

в) Для любого компакта $S_0 \subset S \setminus \Xi$ и любого номера т существует номер p такой, что

$$h_{u_p}(\varsigma) \ge H_{K_m}(\varsigma), \quad \varsigma \in S_0,$$

 $\varepsilon \partial e \ U_p = \ln |F_W| + \varphi_p.$

Доказательство. а) \Rightarrow 6). Пусть выполнено утверждение а). Тогда по теореме 3 для любого компакта $S_0 \subset S \setminus \Xi$ и любого номера m существуют плюрисубгармоническая в \mathbb{C}^n функция ψ , окрестность Ω компакта S_0 и постоянная T > 0 такие, что

$$h_u(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\},$$
где $u = \ln |F_W| + \psi;$

$$u(z) \ge H_{K_m}(z), \quad \forall z : z/|z| \in \Omega, |z| \ge T.$$
 (78)

В силу первого неравенства

$$u(z) \leqslant d + H_L(z), \quad z \in \mathbb{C}^n,$$

где d>0 и L — некоторый выпуклый компакт в области D. Тогда по лемме 14 существует целая функция экспоненциального типа φ , обладающая свойствами 1)-3) из утверждения этой леммы. Поскольку W допускает спектральный синтез, то из свойств 1) и 2) следует, что $\varphi\in I_W$. В силу свойства 3) с учетом (78) и непрерывности опорной функции компакта для любой точки $\varsigma\in S_0$ существует последовательность $\{z_k\}\in\Phi_0(\varsigma)$ такая, что

$$\underline{\lim}_{k \to \infty} |z_k|^{-1} \ln |\varphi(z_k)| \ge H_{K_m}(\varsigma). \tag{79}$$

Покажем, что это неравенство влечет за собой (77). Предположим противное, т.е. $\underline{h}_{\varphi}(\varsigma) < H_{K_m}(\varsigma) - 2\varepsilon$ для некоторых $\varepsilon > 0$ и $\varsigma \in S_0$. Тогда согласно предложению 9.3 из работы [7] существуют $\delta > 0$ и последовательность $\{t_j\}_{j=1}^{\infty}$ такие, что $t_j \to +\infty$ и

$$\ln |\varphi(t_j\eta)/t_j| \leq H_{K_m}(\varsigma) - 2\varepsilon, \eta \in B(\varsigma, \delta), \ j = 1, 2, \dots$$

Отсюда, уменьшая, если это необходимо, $\delta > 0$, легко получить следующее:

$$\ln |\varphi(z)|/|z| \leq H_{K_m}(\varsigma) - \varepsilon, z \in B(t_i\varsigma, \delta t_i), \ j = 1, 2, \dots$$

Это неравенство вместе с (79) означает, что точки z_k для всех достаточно больших номеров k не принадлежат ни одному из шаров $B(t_j\varsigma,\delta t_j),\ j=1,2,\ldots$ По определению множества $\Phi_0(\varsigma)$ найдем k_0 такое, что

$$|z_{k+1}| < (1+\delta/2)|z_k|, |z_k/|z_k| - \varsigma| < \delta/2, k > k_0. \tag{80}$$

При этом, как было отмечено, можно считать, что, монотонно возрастая, $|z_k| \to +\infty$. Таким образом, для некоторого J_0 и каждого $j > j_0$ найдется номер $k_j > k_0$ такой, что верны неравенства $|z_{k_j}| \leqslant t_j \leqslant |x_{k_j+1}|$ и точки z_{k_j}, z_{k_j+1} не принадлежат шару $B(t_j\varsigma, \delta t_j)$. Используя первое неравенство в (80), получаем:

$$|t_j/|z_{k_j}| \leq |z_{k_j+1}|/|z_{k_j}| < 1 + \delta/2.$$

Отсюда следует, что

$$|z_{k_j}| \leq t_j < |z_{k_j}| + \delta |z_{k_j}|/2 \leq |z_{k_j}| + \delta t_j/2.$$

Учитывая теперь второе неравенство в (80), имеем:

$$|z_{k_j} - t_j \varsigma| \le |z_{k_j}||z_{k_j}/|z_{k_j}| - \varsigma| + ||z_{k_j}|\varsigma - t_j \varsigma| < \delta|z_{k_j}|/2 + \varepsilon|s|^{-1}$$

$$+\delta t_j/2 \leqslant \delta t_j/2 + \delta t_j/2 = \delta t_j.$$

Это означает, что точка z_{k_j} принадлежат шару $B(t_j\varsigma,\delta t_j)$. Полученное противоречие завершает доказательство.

б) \Rightarrow в). Пусть $\varphi \in I_W$ удовлетворяет (77). Так как $I_W \subset P_D$, то по определению пространства P_D найдутся номер p и число c>0 такие, что

$$|\varphi(z)| \leqslant c \exp HK_p(z), \quad z \in \mathbb{C}^n.$$

Тогда по определению ψ_p и нижнего индикатора с учетом (77) получаем:

$$\underline{h}_{u_n}(\varsigma) \ge \underline{h}_{\varphi/c}(\varsigma) \ge H_{K_m}(\varsigma), \varsigma \in S_0.$$

в) \Rightarrow а). Если имеет место утверждение в), то выполнено и утверждение б) из теоремы 3. Действительно, достаточно заметить, что для любого номера p верно неравенство

$$h_{u_p}(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}.$$

Тогда по теореме 3 выполнено и утверждение а). Теорема доказана.

Рассмотрим теперь отдельно случай ограниченной выпуклой области. В этом случае можно дать более простые по форме критерии продолжения функций из главных инвариантных подпространств.

Пусть D — ограниченная выпуклая область, W — нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез. Введем функции

$$\psi_0(z) = \overline{\lim}_{\xi \to z} \sup \{ \ln |\varphi(\xi)| - \ln |F_W(\xi)| : \varphi \in H(\mathbb{C}^n), \varphi/F_W \in H(\mathbb{C}^n), \ln |\varphi(y)| \leqslant H_D(y), \forall y \}.$$

По тем же соображениям, что и для ψ_m , функции ψ_0 , ψ'_0 являются плюрисубгармоническими в \mathbb{C}^n . Непосредственно из определений следует неравенство $\psi_0(z) \leqslant \psi'_0(z)$, $z \in \mathbb{C}^n$. Возникает естественный вопрос: можно ли неравенство заменить на равенство? Ответ на этот вопрос требует дополнительных исследований, которые выходят за рамки данной работы.

Теорема 5. Пусть D — ограниченная выпуклая область в \mathbb{C}^n , W — нетривиальное замкнутое главное инвариантное подпространство в H(D), допускающее спектральный синтез; G — выпуклая подобласть D(W), содержащая D. Следующие утверждения эквивалентны:

- a) Каждая функция из W аналитически продолжается в область G и аппроксимируется там линейными комбинациями элементов из E(W).
- б) Для любого компакта $S_0 \subset S \setminus \Xi$ и любого номера т существует число R > 0 такое, что $(u_0' = \psi_0' + \ln |F_W|)$

$$u_0'(z) \ge H_{K_m}(z), \quad \forall z : z/|z| \in S_0, |z \ge R|.$$

- в) Существует целая функция экспоненциального типа φ такая, что
- 1) φ делится на F_W ,
- 2) $h_{\varphi}(z) \leqslant H_D(z), z \in \mathbb{C}^n$,
- 3) $\underline{h}_{\varphi}(\varsigma) = h_{\varphi}(\varsigma) = H_D(\varsigma), \ \varsigma \in \overline{S \setminus \Xi}.$
- $e(s) \stackrel{\cdot}{\underline{h}_{u_0}}(\varsigma) = h_{u_0}(\varsigma) = H_D(\varsigma), \ \varsigma \in \overline{S \setminus \Xi}, \ e \partial e \ u_0 = \psi_0 + \ln |F_W|.$
- ∂) Существует плюрисубгармоническая функция ψ такая, что
- 1) $h_u(z) \leq H_D(z), z \in \mathbb{C}^n, \ r\partial e \ u = \psi + \ln |F_W|;$
- 2) $\underline{h}_{u}(\varsigma) = h_{u}(\varsigma) = H_{D}(\varsigma), \ \varsigma \in S \setminus \Xi.$

Доказательство. а) \Rightarrow 6). Если выполнено утверждение а), то по пункту в) теоремы 3 существует плюрисубгармоническая в \mathbb{C}^n функция ψ и постоянная T>0 такие, что верны неравенства:

$$h_u(z) < H_D(z), \quad z \in \mathbb{C}^n \setminus \{0\}, u = \ln|F_W| + \psi;$$
 (81)

$$u(z) \ge H_{K_{m+1}}(z), \quad \forall z : z/|z| \in S_0, |z| \ge T.$$
 (82)

В силу (81) найдется c > 0 такое, что

$$u(z) \leqslant c + H_D(z), \quad z \in \mathbb{C}^n.$$

Тогда по определению ψ_0' с учетом (82) имеем:

$$u_0'(z) \ge u(z) - c \ge H_{K_{m+1}}(z) - c, \forall z : z/|z| \in S_0, |z| \ge T.$$

Поскольку компакт K_m лежит во внутренности K_{m+1} , то

$$H_{K_{m+1}}(z) - c \ge H_{K_m}(z), \forall z : |z| \ge R,$$

для некоторого $R \geq T$. Это дает нам требуемую оценку. б) \Rightarrow в). Из определения ψ_0' следует, что

$$u_0'(z) \leqslant H_D(z), \quad z \in \mathbb{C}^n.$$

Тогда согласно лемме 14 существует целая функция экспоненциального типа φ , обладающая свойствами 1), 2) из утверждения в) и такая, что для любого $\varsigma \in S$ найдется последовательность $\{z_k(\varsigma)\} \in \Phi_0(\varsigma)$, на которой

$$\lim_{k \to \infty} |z_k|^{-1} |\ln |\varphi(z_k(\varsigma))| - u_0'(z_k(\varsigma))| = 0.$$

Отсюда с учетом утверждения б) и того, что $\{K_m\}$ — исчерпывающая последовательность компактов в D, получаем неравенство

$$\underline{\lim}_{k \to \infty} |z_k(\varsigma)|^{-1} \ln |\varphi(z_k(\varsigma))| \ge H_D(\varsigma), \quad \varsigma \in S \setminus \Xi.$$
 (83)

Покажем, что подобные последовательности $\{z_k(\varsigma)\}\in\Phi_0(\varsigma)$ существуют и для точек множества $\partial(S\setminus\Xi)$. Фиксируем $\varsigma\in\partial(S\setminus\Xi)$ и выберем последовательность $\{\varsigma_p\}\subset S\setminus\Xi$, сходящуюся к ς . Требуемую последовательность $\{z_k(\varsigma)\}\in\Phi_0(\varsigma)$ будем составлять из точек $z_k(\varsigma_p),\ p,k\geq 1$. Согласно (83) и определению $\Phi_0(\varsigma)$ для каждого $p\geq 1$ найдем номер $k_0(p)$ такой, что при $k\geq k_0(p)$ имеют место соотношения

$$|z_k(\varsigma_p)|^{-1} \ln |\varphi(z_k(\varsigma_p))| \ge H_D(\varsigma_p) - 1/p, \tag{84}$$

$$|z_k(\varsigma_p)| \ge p, \quad |z_{k+1}(\varsigma_p)|/|z_k(\varsigma_p)| \le 1 + 1/p, \quad |z_k(\varsigma_p)/|z_k(\varsigma_p)| - \varsigma_p| \le 1/p.$$
 (85)

Кроме того, выберем номер $k_1(p) \ge k_0(p)$ так, что

$$|z_{k_1(p)}(\varsigma_p)| \ge |z_{k_0(p+1)}(\varsigma_{p+1})|.$$
 (86)

Перенумеруем по порядку точки $z_{k_0(p)}(\varsigma_p),\ldots,z_{k_1(p)}(\varsigma_p)$, начиная с p=1, и обозначим их $z_1(\varsigma),z_2(\varsigma),\ldots$, т.е. положим $z_1(\varsigma)=z_{k_0(1)}(\varsigma_1),\ldots,z_{k_1(1)-k_0(1)+1}(\varsigma)=z_{k_1(1)}(\varsigma_1),z_{k_1(1)-k_0(1)+2}(\varsigma)=z_{k_0(2)}(\varsigma_2)$ и т.д. В силу (85) и (86) последовательность $\{z_k(\varsigma)\}$ принадлежит $\Phi_0(\varsigma)$, а из (84) и непрерывности функции H_D следует неравенство

$$\underline{\lim}_{k\to\infty} |z_k(\varsigma)|^{-1} \ln |\varphi(z_k(\varsigma))| \ge H_D(\varsigma).$$

Последнее с учетом (83), как и при доказательстве импликации а) \Rightarrow б) в теореме 4, означает, что $\underline{h}_{u'_0}(\varsigma) \ge H_D(\varsigma)$ для всех $\varsigma \in \overline{S \setminus \Xi}$. Поскольку нижний индикатор не больше, чем верхний, то с учетом свойства 2) получаем свойство 3) из утверждения в).

Импликация в)⇒д) очевидна.

а) \Rightarrow г). Пусть выполнено утверждение а). Тогда по теореме 4 выполнено и утверждение в) этой теоремы, которое с учетом определения функций ψ_0, ψ_p и того, что $\{K_m\}$ — исчерпывающая последовательность компактов в D, дает оценку

$$\underline{h}_{u_0'}(\varsigma) \ge H_D(\varsigma), \quad \varsigma \in S \setminus \Xi.$$

Эта оценка согласно лемме 2.7 в работе [30] означает, что для любого $\varsigma \in S \setminus \Xi$ найдется последовательность $\{z_k(\varsigma)\} \in \Phi_0(\varsigma)$, на которой

$$\underline{\lim}_{k\to\infty}|z_k(\varsigma)|^{-1}u_0(z_k(\varsigma))|\geq H_D(\varsigma).$$

Отсюда, как и при доказательстве импликации б) \Rightarrow в), получаем требуемые соотношения для функции u_0 .

Импликация г)⇒д) очевидна.

д) \Rightarrow а). Пусть выполнено утверждение д). Достаточно показать, что тогда выполнено и утверждение б) теоремы 3. Докажем это. Фиксируем номер m и точку $\varsigma \in S \setminus \Xi$. Выберем $\varepsilon > 0$, удовлетворяющее условию

$$H_{K_m}(z) + 2\varepsilon |z| \le H_D(z), \quad z \in \mathbb{C}^n.$$
 (87)

Пусть $\varphi \in I_W$. Тогда $\ln |\varphi| = \ln |F_W| + \psi'$, где $\psi' -$ плюрисубгармоническая функция, и для некоторого компакта $L \subset D$ и d>0 верна оценка

$$\ln|\varphi(z)| = \ln|F_W(z)| + \psi'(z) \leqslant d + H_L(z), \quad z \in \mathbb{C}^n.$$
(88)

Заменяя, если это необходимо, функцию ψ' на другую плюрисубгармоническую функцию, согласно лемме 9 можно считать, что

$$\ln |F_W(t\xi)| + \psi'(t\xi) \ge -a_0 t, \quad t \ge T,$$
 (89)

где a_0 , T — положительные постоянные. При этом сохранится оценка (88), возможно лишь с другим компактом $L \subset D$. Выберем $\tau \in (0,1)$ так, что

$$\tau a_0 \leqslant \varepsilon, \quad \tau b \leqslant \varepsilon,$$
(90)

где $b = \sup_{|w|=1} H_D(w)$. Положим

$$\psi_{\varsigma,m}(z) = \tau \psi'(z) + (1 - \tau)\psi(z).$$

Тогда из определения верхнего индикатора, (88), свойства 1) функции u с учетом того, что L — компакт в области D, получаем:

$$h_{u_{\sigma,m}}(z) \leqslant \tau h_{\omega}(z) + (1-\tau)h_{u}(z) < H_{D}(z), z \in \mathbb{C}^{n} \setminus \{0\},$$

где $u_{\varsigma,m}=\ln|F_W|+\psi_{\varsigma,m}$. Кроме того, в силу свойства 2) функции u, (87), (89) и (90) с учетом определения нижнего индикатора имеем:

$$\underline{h}_{u_{\varepsilon,m}}(\varsigma) \ge \tau \underline{h}_{\omega}(\varsigma) + (1-\tau)\underline{h}_{u}(\varsigma) \ge -\varepsilon + H_{D}(\varsigma) - \varepsilon \ge H_{K_{m}}(\varsigma).$$

Таким образом, теорема полностью доказана.

В заключение приведем еще один результат о принудительном аналитическом продолжении, в котором утверждается, что при условии продолжения функций из $W \subset H(D)$ в выпуклую область G эти функции автоматически продолжаются в некоторую максимальную выпуклую область, построенную по D и G (в так называемую Ξ -оболочку D).

Пусть D, G — выпуклые области и $D \subset G$. Положим

$$G(D) = \{z : \operatorname{Re} \langle z, \xi \rangle < H_D(\xi), \xi \in \Xi\}.$$

Нетрудно видеть, что, G(D) является выпуклой областью.

Лемма 15. Пусть $D, G - выпуклые области и <math>D \subset G$. Тогда $G \subset G(D)$ и имеет место равенство: $\Xi(D,G) = \Xi(D,G(D))$.

Доказательство. Пусть $z \in G$. Тогда $\text{Re } \langle z, \xi \rangle < H_G(\xi), \xi \in S$. Следовательно, в силу определения $\Xi(D,G)$ получаем:

$$\operatorname{Re}\langle z,\xi\rangle < H_G(\xi) = H_D(\xi), \xi \in \Xi(D,G).$$

Это означает, что $z \in G(D)$. Таким образом, $G \subset G(D)$. Из последнего вложения следует, что

$$H_D(\xi) < H_G(\xi) \leqslant H_{G(D)}(\xi), \quad \xi \in S \setminus \Xi(D, G).$$

Поэтому $\Xi(D,G(D))\subset\Xi(D,G)$. Пусть теперь $\xi\in\Xi(D,G)$. По определению G(D) имеем: $H_{G(D)}(\xi)\leqslant H_D(\xi)$. С другой стороны, в силу вложения $D\subset G(D)$ верно и обратное неравенство: $H_D(\xi)\leqslant H_{G(D)}(\xi)$. Таким образом, $H_{G(D)}(\xi)=H_D(\xi)$, т.е. $\xi\in\Xi(D,G(D))$. Лемма доказана.

Теорема 6. Пусть $D, G - выпуклые области, <math>D \subset G$ и множество $S \cap \Xi \setminus int\Theta_D$ замкнуто. Пусть далее W -нетривиальное замкнутое инвариантное подпространство в H(D), допускающее спектральный синтез. Предположим, что каждая функция из W аналитически продолжается в область G и аппроксимируется там линейными комбинациями элементов из E(W). Тогда каждая функция из W аналитически продолжается в область G(D) и аппроксимируется там линейными комбинациями элементов из E(W).

Доказательство. Если условия теоремы выполнены, то согласно теореме 4 будет выполнено и утверждение б) этой теоремы. По лемме 15 $\Xi(D,G)=\Xi(D,D(G))$. Поэтому будет выполнено утверждение а) теоремы 4, где в качестве области G нужно взять G(D). Теорема доказана.

Замечание. Область G(D), вообще говоря, не совпадает с областью G. К примеру, рассмотрим какой-нибудь треугольник. В качестве D возьмем круг, вписанный в треугольник, а в качестве G — произвольную выпуклую область, содержащую D и содержащуюся в треугольнике, граница которой пересекается с границей круга лишь в точках касания последнего с границей треугольника. Областью G(D) в этом случае будет сам треугольник, который, безусловно, не обязан совпадать с G.

СПИСОК ЛИТЕРАТУРЫ

- 1. Напалков В.В. Уравнения свертки в многомерных пространствах. М.: Наука. 1982.
- 2. J. Hadamard Essai sur l'etude des functions donnes par leur developpement de Taylor // J. Math. Pures Appl. Ser., 4:8. 1892. P. 101–106.
- 3. E. Fabry Sur les points singuliers d'une function donnée par son developpement de Taylor // Ann. Ecole Norm. Sup., 13. 1896. P. 367–399.
- 4. Красичков-Терновский И.Ф. Инвариантные подпространства аналитических функций. I. Спектральный анализ на выпуклых областях // Матем. сб. Т. 87, вып. 4. 1972. С. 459–489.
- 5. Красичков-Терновский И.Ф. Инвариантные подпространства аналитических функций. II. Спектральный синтез на выпуклых областях // Матем. сб. Т. 88, вып. 1. 1972. С. 3–30.
- 6. Юлмухаметов Р.С. Однородные уравнения свертки // ДАН СССР. Т. 316, вып. 2. 1991. С. 312–315.
- 7. Кривошеев А.С., Напалков В.В. *Комплексный анализ и операторы свертки* // Усп. матем. наук. Т. 47, вып. 6. 1992. С. 3–58.
- 8. Красичков-Терновский И.Ф. Спектральный синтез и аналитическое продолжение // УМН. Т. 58, вып. 1. 2003. С. 33–112.
- 9. G. Polya Uber die Exstenz unendlich vieler singularer Punkte auf der Konvergenzgeraden gewisser Dirichlet'sher Reihen // Sitzungber. Preu. Akad. Wiss. 1923. P. 45–50.
- 10. G. Polya Eine Verallgemeinerung des Fabryschen Luckensatzes // Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 2. 1927. P. 187–195.
- 11. V. Bernstein Lecons sur les progress de la theorie des series de Dirichlet // Paris: Gauthier-Villars.
- 12. A. Ostrowski *Uber die analytishe Fortsetzung von Taylorshen und Dirichlet'sher Reihen //* Math. Ann. 129. 1955. P. 1–43.
- 13. Леонтьев А.Ф. O классе функций, определенных рядом полиномов Дирихле // УМН. Т. 3, вып. 4. 1948. С. 3–58.

- 14. Леонтьев А.Ф. Pяды полиномов Дирихле и их обобщения // Труды МИАН. Т. 39. 1951. С. 1–215.
- 15. J.P. Kahane Sur quelques problemes d'unicite et de prolongement, relatifs aux fonctions approchables par des sommes d'exponentielles // Ann. Inst. Fourier. 5. 1953–1954. P. 39–130.
- 16. Леонтьев А.Ф. *О сходимости последовательности полиномов Дирихле* // ДАН СССР. Т. 108, вып. 1. 1956. С. 23–26.
- 17. Леонтьев А.Ф. Новое доказательство одной теоремы о сходимости последовательностей полиномов Дирихле // УМН. Т. 12, вып. 3. 1957. С. 165–170.
- 18. Леонтьев А.Ф. *О свойствах последовательностей полиномов Дирихле, сходящихся на интервале мнимой оси* // ИАН СССР. Сер. матем. Т. 29. вып. 2. 1965, С. 261–328.
- 19. L. Schwartz Etude des sommes d'exponentielles // Paris: Hermann. 1959.
- 20. A. Baillette Approximation de fonctions par des sommes d'exponentielles // C.R. Acad. Sci. Paris. 249. 1959. P. 2470–2471.
- 21. A. Baillette Fonctions approchfbles par des sommes d'exponentielles // J. Anal. Math. 10. 1962—1963. P. 91–115.
- 22. Красичков-Терновский И.Ф. *Сходимость полиномов Дирихле //* Сиб. матем. жур. № 7. 1966. С. 1039–1058.
- 23. Красичков-Терновский И.Ф. Инвариантные подпространства аналитических функций. Аналитическое продолжение // Изв. АН СССР. Сер. матем. Т. 37, вып. 4. 1973. С. 933–947.
- 24. Кривошеев А.С. Аналитическое продолжение функций из инвариантных подпространств в выпуклых областях комплексного пространства // Изв. РАН. Сер. матем. Т. 62, вып. 2. 1998. С. 75–102.
- 25. Кривошеев А.С. *Аналитическое продолжение функций из инвариантных подпространств* // Докл. РАН. Т. 386, вып. 4. 2002. С. 450–452.
- 26. Кривошеев А.С. *Критерий аналитического продолжения функций из инвариантных подпространств в выпуклых областях комплексной плоскости* // Известия РАН. Сер. матем. Т. 68, вып. 1. 2004. С. 45–81.
- 27. C.O. Kiselman Prolongement des solutions d'une equation aux derivees partielles a coefficieents constants // Bull.Soc. Math. France. 97. 1969. P. 329–354.
- 28. A. Sebbar Prolongements des solutions holomorphes de certains operateurs differentiel d'ordre infini a coefficients constants // Lecture Notes in Math. 822. 1980. P. 199–220.
- 29. A. Meril, D.C. Struppa Convolutors of holomorphic functions // Lecture Notes in Math. 1276. 1987. P. 253–275.
- 30. Кривошеев А.С. Об индикаторах целых функций и продолжении решений однородного уравнения свертки // Матем. сб. Т. 184, вып. 8. 1993. С. 81–108.
- 31. R. Ishimura, Y. Okada *The existence and the continuation of holomorphic solutions for convolution equations in tube domains* // Bull. Soc. Math. France. 122. 1994. P. 413–433.
- 32. Лейхтвейс К. Выпуклые множества. М.: Наука. 1985.
- 33. Ронкин Л.И. Введение в теорию целых функций многих переменных. М.: Наука. 1971.
- 34. Эдвардс Р. Функциональный анализ. М.: Мир. 1969.
- 35. Гротендик А.О. *О пространствах* (F) u (DF) // Сб. Математика. Т. 2, вып. 3. 1958. С. 81–127.
- 36. Хермандер Л. Анализ линейных дифференциальных операторов с частными производными. І. Теория распределений и анализ Фурье. М.: Мир. 1986.
- 37. Лелон П., Груман Л. Целые функции многих комплексных переменных. М.: Мир. 1989.
- 38. Леонтьев А.Ф. Целые функции. Ряды экспонент. М.: Наука. 1983.
- 39. Юлмухаметов Р.С. *Целые функции многих переменных с заданным поведением в бесконечности* // Известия РАН. Сер. матем. Т. 60, вып. 4. 1996. С. 205–224.
- 40. Кривошеев А.С. Инвариантные подпространства в выпуклых областях из \mathbb{C}^n .І. // Уфимский математический журнал. Т. 1. № 2. 2009. С. 53–75.

Александр Сергеевич Кривошеев, Институт математики с ВЦ УНЦ РАН, ул. Чернышевского, 112, 450008, г. Уфа, Россия

E-mail: kriolesya2006@yandex.ru