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ON AN INVERSE SPECTRAL PROBLEM
FOR STURM-LIOUVILLE OPERATOR

WITH DISCONTINUOUS COEFFICIENT
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Abstract. In this paper, the direct and inverse problems for Sturm-Liouville operator with
discontinuous coefficient are studied. The spectral properties of the Sturm-Liouville problem
with discontinuous coefficient such as the orthogonality of its eigenfunctions and simplicity
of its eigenvalues are investigated. Asymptotic formulas for eigenvalues and eigenfunctions
of this problem are examined. The resolvent operator is constructed and the expansion
formula with respect to eigenfunctions is obtained. It is shown that eigenfunctions of this
problem are in the form of a complete system. The Weyl solution and Weyl function are
defined. Uniqueness theorems for the solution of the inverse problem according to Weyl
function and spectral date are proved.
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1. Introduction

In non-homogeneous environment, vibration, diffusion and other physical problems are
described by differential equations with discontinuous coefficient [1]-[8]. While solving these
problems, the spectral properties of Sturm - Liouville problem with discontinuous coefficient
should be analyzed [7]-[21].

We consider the differential equation

−y′′ + q(x)y = λ2ρ(x)y, 0 6 x 6 π (1.1)

with the boundary conditions

y′(0) = 0, y(π) = 0 (1.2)
where λ is a complex spectral parameter. We suppose that q ∈ L2(0, π) is a real-valued function,
ρ is a piecewise continuous function:

ρ(x) =

{
1 0 6 x < a
α2 a 6 x 6 π.

(1.3)

As ρ(x) ≡ 1, the same problems were studied in [4], [22]-[24]. In general case, problem (1.1),
(1.2) is solved by considering it in the intervals [0, a) and [a, π]. But in this study, problem (1.1),
(1.2) was reduced to an equivalent integral equation in [0, π] interval. For the special solution of
problem, the integral representation in this interval was used. There were shown the simplicity
and reality of eigenvalues and the orthogonality of the eigenfunctions associated with different
eigenvalues and the asymptotic formulas for the eigenvalues and eigenfunctions were obtained.
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The definition of the system of eigenfunctions is given in the weighted space L2,ρ(0, π) with the
weight ρ. The expansion formula for eigenfunctions and Parseval identity were obtained. In the
last part of the study, the inverse problem boundary value problem for (1.1), (1.2) was studied
for Weyl function, the uniqueness of solution of inverse problem for the spectral data formed
by the eigenvalues and normalizing numbers was shown.

Here we deal with boundary value problem (1.1), (1.2). Let ϕ(x, λ) and ψ(x, λ) be the
solutions of boundary value problem (1.1), (1.2) satisfying the initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = 0 (1.4)

and

ψ(π, λ) = 0, ψ′(π, λ) = 1. (1.5)

Denote

∆(λ) = W [ϕ(x, λ), ψ(x, λ)] = ϕ(x, λ)ψ′(x, λ)− ϕ′(x, λ)ψ(x, λ). (1.6)

Function ∆(λ) is called the characteristic function of problem (1.1), (1.2). Substituting x = 0
and x = π into (1.6), we get

∆(λ) = ϕ(π, λ) = ψ′(0, λ). (1.7)

Lemma 1. The eigenfunctions y1(x, λ1) and y2(x, λ2) corresponding to different eigenvalues
λ1 6= λ2 are orthogonal.

Proof. Since y1(x, λ1) and y2(x, λ2) are eigenfunctions of problem (1.1), (1.2), we get

−y′′1(x, λ1) + q(x)y1(x, λ1) = λ2
1ρ(x)y1(x, λ1),

−y′′2(x, λ2) + q(x)y2(x, λ2) = λ2
2ρ(x)y2(x, λ2).

Multiplying these identities by y2(x, λ2 ) and −y1(x, λ1), respectively, and summing up, we
obtain

d

dx
{< y2(x, λ2), y1(x, λ1) >} = (λ2

1 − λ2
2)ρ(x)y1(x, λ1)y2(x, λ2).

Integrating from 0 to π and using the condition (1.2), we have

(λ2
1 − λ2

2)

∫ π

0

ρ(x)y1(x, λ1)y2(x, λ2)dx = 0.

Since λ1 6= λ2, ∫ π

0

ρ(x)y1(x, λ1)y2(x, λ2)dx = 0.

Corollary 1. The eigenvalues of boundary value problem (1.1),(1.2) are real.

Lemma 2. The zeros λn of characteristic function coincide with the eigenvalues of boundary
value problem (1.1), (1.2). The functions ϕ(x, λn) and ψ(x, λn) are eigenfunctions, and there
exists a sequence βn such that

ψ(x, λn) = βnϕ(x, λn), βn 6= 0. (1.8)
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Proof. 1) Let λ0 be zero of ∆(λ). Then, because of (1.6), ψ(x, λ0) = β0ϕ(x, λ0) and the function
ψ(x, λ0) and ϕ(x, λ0) satisfy boundary condition (1.2). Thus, λ0 is an eigenvalue and ψ(x, λ0),
ϕ(x, λ0) are associated eigenfunctions.

2) Let λ0 be an eigenvalue of problem (1.1), (1.2) and let y0(x) be an associated eigenfunction.
Then, y0(x) satisfies boundary condition (1.2). Clearly, y0(x) 6= 0. Without loss of generality,
we let y0(0) = 1. Then y′0(0) = 0 and therefore, y0(x) ≡ ϕ(x, λ). Hence, by (1.7), ∆0(λ) = 0.
We have proved that for each eigenvalue there exists only one eigenfunction.

Definition 1. The normalizing number of boundary value problem (1.1), (1.2) is described
as

αn :=

∫ π

0

ρ(x)ϕ2(x, λn)dx.

Lemma 3. The eigenvalues of boundary value problem (1.1), (1.2) are simple and
·

∆(λ) = 2λnαnβn. (1.9)

Proof. Since ϕ(x, λn) and ψ(x, λ) are the solutions of this problem, the identities

−ϕ′′(x, λn) + q(x)ϕ(x, λn) = λ2
nρ(x)ϕ(x, λn),

−ψ′′(x, λ) + q(x)ψ(x, λ) = λ2ρ(x)ψ(x, λ)

hold true. Multiplying them by ψ(x, λ ) and −ϕ(x, λn), respectively, and summing up, we get
d

dx
{< ϕ(x, λn), ψ(x, λ) >} = (λ2

n − λ2)ρ(x)ϕ(x, λn)ψ(x, λ).

Integrating from 0 to π and using the condition (1.2), we obtain:∫ π

0

ρ(x)ϕ(x, λn)ψ(x, λ) =
∆(λn)−∆(λ)

λ2
n − λ2

.

Since ψ(x, λn) = βnϕ(x, λn) as λ→ λn, by Lemma 3, we obtain
·

∆(λn) = 2λnαnβn

where βn = ψ(0, λn). Thus, it follows that
·

∆(λn) 6= 0.

2. On the Eigenvalues of Problem (1.1), (1.2) as q(x) ≡ 0

We denote by ϕ0(x, λ) the solution to the equation −y′′ = λ2ρ(x)y satisfying condition (1.4).
It reads as:

ϕ0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
cosλµ+(x) +

1

2

(
1− 1√

ρ(x)

)
cosλµ−(x) (2.1)

where µ±(x) = ±x
√
ρ(x) + a(1∓

√
ρ(x)).

We see that if (λ0
n)2 are the eigenvalues of problem (1.1), (1.2) as q(x) ≡ 0, then λ0

n can be
found via the equation ϕ0(π, λ) = 0, that is, by the equation

∆0(λ) =
1

2
(1 +

1

α
) cosλµ+(π) +

1

2
(1− 1

α
) cosλµ−(π) = 0

cosλµ+(π) +
α− 1

α + 1
cosλµ−(π) = 0. (2.2)

It follows from (2.2) that

λ0
n =

π

µ+(π)

(
n− 1

2

)
+ hn (2.3)
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where
sup
n
|hn| <∞.

Lemma 4. The roots of function ∆0(λ) are isolated, i.e.,

inf
n6=k

∣∣λ0
n − λ0

k

∣∣ = γ > 0.

Proof. We argue by the contradiction. Assume the contrary, then there are two sequences
{
λ0
k,1

}
,{

λ0
k,2

}
of zeros of function ∆0 (λ) such that

λ0
k,1 6= λ0

k,2, λ0
k,1 →∞, λ0

k,2 →∞, lim
k→∞

(
λ0
k,1 − λ0

k,2

)
= 0.

By Lemma 1, functions ϕ0

(
x, λ0

k,1

)
and ϕ0

(
x, λ0

k,2

)
are orthogonal:

0 =

∫ π

0

ρ (x)ϕ0

(
x, λ0

k,1

)
ϕ0

(
x, λ0

k,2

)
dx =

=

∫ π

0

ρ (x)ϕ0

(
x, λ0

k,1

) [
ϕ0

(
x, λ0

k,2

)
− ϕ0

(
x, λ0

k,1

)]
dx+

+

∫ π

0

ρ (x)ϕ2
0

(
x, λ0

k,1

)
dx =

=Ik +

∫ π

0

ρ (x)ϕ2
0

(
x, λ0

k,1

)
dx > Ik +

∫ a

0

ρ (x)ϕ2
0

(
x, λ0

k,1

)
dx =

=Ik +

∫ a

0

cos2
(
λ0
k,1x
)
dx = Ik +

a

2
−

sin
(
2aλ0

k,1

)
4λ0

k,1

,

where
Ik =

∫ π

0

ρ (x)ϕ0

(
x, λ0

k,1

) [
ϕ0

(
x, λ0

k,2

)
− ϕ0

(
x, λ0

k,1

)]
dx.

Let us show that
lim
k→∞

Ik = 0.

Indeed, by (2.1) and the estimate∣∣cosλ0
k,1x− cosλ0

k,2x
∣∣ 6 C

∣∣λ0
k,1 − λ0

k,2

∣∣ (C > 0)

we conclude that ∣∣ϕ0

(
x, λ0

k,1

)
− ϕ0

(
x, λ0

k,2

)∣∣ 6 C
∣∣λ0
k,1 − λ0

k,2

∣∣ (C > 0) .

Thus, lim
k→∞

(
ϕ0

(
x, λ0

k,1

)
− ϕ0

(
x, λ0

k,2

))
= 0 is valid uniformly for x ∈ [0, π]. Passing to the

limit in the inequality 0 > Ik + a
2
− sin(2aλ0k,1)

4λ0k,1
as k → ∞, we have 0 > a

2
. We arrive at the

contradiction.

3. Asymptotic Formulas of Eigenfunctions and Eigenvalues

Using representation for solution e(x, λ) to equation (1.1) satisfying the initial conditions
e(0, λ) = 1, e′(0, λ) = iλ, we obtain the following integral representation for solution ϕ(x, λ):

ϕ(x, λ) = ϕ0(x, λ) +

∫ µ+(x)

0

A(x, t) cosλtdt

where K(x, .) ∈ L1(−µ+(x), µ+(x)) and A(x, t) = K(x, t)−K(x,−t). Kernel A(x, t) processes
the following properties:

i) A(π, µ+(π)) = 1
4

∫ π
0

1√
ρ(t)

(
1 + 1√

ρ(t)

)
q(t)dt,
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ii) A(π, µ−(π) + 0)− A(π, µ−(π)− 0) = 1
4

∫ π
0

1√
ρ(t)

(
1− 1√

ρ(t)

)
q(t)dt.

Lemma 5. As |λ| → ∞, the asymptotic formulas

ϕ (x, λ) = ϕ0 (x, λ) +O

(
e|Imλ|µ

+(x)

|λ|

)
= O

(
e|Imλ|µ

+(x)
)

ϕ′ (x, λ) = ϕ′0 (x, λ) +O
(
e|Imλ|µ

+(x)
)

= O
(
|λ| e|Imλ|µ+(x)

) (3.1)

ψ (x, λ) = ψ0 (x, λ) +O

(
e|Imλ|(µ

+(π)−µ+(x))

|λ|2

)
= O

(
e|Imλ|(µ

+(π)−µ+(x))

|λ|

)

ψ′ (x, λ) = ψ′0 (x, λ) +O

(
e|Imλ|(µ

+(π)−µ+(x))

|λ|

)
= O

(
e|Imλ|(µ

+(π)−µ+(x))
) (3.2)

hold true uniformly with respect to x ∈ [0, π].

Proof. The standard method of variations of an arbitrary constants leads us to the following
integral equation for the solution ϕ (x, λ) :

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0

g(x, t;λ)q(t)ϕ(t, λ)dt (3.3)

where

g(x, t;λ) =
1

2

(
1√
ρ(x)

+
1√
ρ(t)

)
sinλ(µ+(x)− µ+(t))

λ
+

+
1

2

(
1√
ρ(x)

− 1√
ρ(t)

)
sinλ(µ−(x)− µ+(t))

λ
(3.4)

and ϕ0(x, λ) is the solution of equation (1.1) as q(x) ≡ 0 satisfying the conditions (1.4).
Denote

σ (λ) = max
06x6π

(
|ϕ(x, λ)| e−|Imλ|µ+(π)

)
.

Since ∣∣sinλµ+(x)
∣∣ 6 e|Imλ|µ

+(x),
∣∣cosλµ+(x)

∣∣ 6 e|Imλ|µ
+(x)

and
|g (x, t;λ)| 6 C

|λ|
e|Imλ|(µ

+(x)−µ+(t)),

by (3.3) we get that for |λ| > 1 and x ∈ [0, π],

|ϕ(x, λ)| e−|Imλ|µ+(π) 6 C1 +
C2

|λ|
σ (λ)

∫ x

0

|q(t)| dt,

and therefore

σ (λ) 6 C1 +
C̃2

|λ|
σ (λ) .

For sufficiently large |λ| it yields σ (λ) = O(1), i.e. ϕ(x, λ) = O
(
e|Imλ|µ

+(x)
)
. By this identity

and |g (x, t;λ)| 6 C
|λ|e
|Imλ|(µ+(x)−µ+(t)) we conclude that

ϕ (x, λ) = ϕ0 (x, λ) +O

(
e|Imλ|µ

+(x)

|λ|

)
.
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Differentiating (3.3), we calculate:

ϕ′ (x, λ) = ϕ′0 (x, λ) + g(x, x;λ)q(x)ϕ (x, λ) +

∫ x

0

g′x(x, t;λ)q(t)ϕ(t, λ)dt (3.5)

where by (3.4), g(x, x;λ) = 0 and

g′x(x, t;λ) =
√
ρ(x)

1

2

(
1√
ρ(x)

+
1√
ρ(t)

)
cosλ(µ+(x)− µ+(t))+

+
√
ρ(x)

1

2

(
1√
ρ(x)

− 1√
ρ(t)

)
cosλ(µ−(x)− µ+(t)).

(3.6)

Substituting the identity ϕ(x, λ) = O
(
e|Imλ|µ

+(x)
)
into the right hand side of (3.5), we arrive

at (3.1). In the same way one can get (3.2).

Theorem 1. Boundary value problem (1.1),(1.2) has a countable set of simple eigenvalues
{λ2

n}n>1:

λn = λ0
n +

dn
λ0
n

+
kn
n
, (λn > 0) (3.7)

where λ0
n are the zeros of the function

∆0(λ) =
1

2

(
1 +

1

α

)
cosλµ+(π) +

1

2

(
1− 1

α

)
cosλµ−(π), (3.8)

{λ0
n}2 are the eigenvalues of problem (1.1),(1.2) as q(x) ≡ 0,

dn =
h+ sinλ0

nµ
+(π) + h− sinλ0

nµ
−(π)

1
2
(1 + 1

α
)µ+(π) sinλ0

nµ
+(π) + 1

2
(1− 1

α
)µ−(π) sinλ0

nµ
−(π)

(3.9)

is a bounded sequence and kn ∈ l2.

Proof. Since ∆ (λ) = ϕ(π, λ) is the characteristic function of boundary value problem (1.1),
(1.2), we have

∆(λ) = ∆0(λ) +

∫ π

0

g(π, t;λ)q(t)ϕ(t, λ)dt. (3.10)

By (3.1) we obtain

∆(λ) = ∆0(λ) + h+ sinλµ+(π)

λ
+ h−

sinλµ−(π)

λ
+K0(λ), (3.11)

where

h± = ±1

4

(
1± 1

α

)∫ a

0

q(t)dt+
1

4
(α± 1)

∫ π

a

q(t)dt, (3.12)

and

K0(λ) =
1

4λ
(1 + α)

∫ a

0

cosλ(2µ+(t)− µ+(π))q(t)dt+

+
1

4λ
(1− α)

∫ a

0

cosλ(2µ+(t)− µ−(π))q(t)dt+

+
1

4λ

(
1 +

1

α

)∫ π

a

cosλ(2µ+(t)− µ+(π))q(t)dt+

+
1

4λ

(
1− 1

α

)∫ π

a

cosλ(µ+(π) + µ−(t)− µ+(t))q(t)dt+O

(
e|Imλ|µ

+(π)

|λ|2

)
.

(3.13)
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We denote Gδ = {λ : |λ− λ0
n| > δ}, where δ is a sufficiently small positive number δ < γ

2
(see

lemma 5). Let us show that

|∆0(λ)| > Cδe
|Imλ|µ+(π), λ ∈ Gδ, Cδ > 0. (3.14)

We have |cosλµ+(π)| > Cδe
|Imλ|µ+(π), λ ∈ Gδ. Then, using (3.8), we get (3.14). Further, by

(3.11) we arrive at
|∆(λ)| > C̃δe

|Imλ|µ+(π), λ ∈ Gδ, C̃δ > 0. (3.15)
On the other hand, by (3.11) we obtain

∆(λ)−∆0(λ) = O

(
e|Imλ|µ

+(π)

|λ|

)
, |λ| → ∞. (3.16)

Consider the contour Γn = {λ : |λ| = |λ0
n|+

γ
2
} (n = 1, 2, . . .). Enlarging unboundedly contour

Γn, for sufficiently large n by (3.14) and (3.16) we have

|∆(λ)−∆0(λ)| 6 |∆0(λ)| , λ ∈ Γn . (3.17)

Applying now Rouche’s theorem, we see that the number of zeros of ∆0(λ) inside Γn coincides
with the number of zeros of ∆(λ) = {∆(λ)−∆0(λ)}+ ∆0(λ). We apply the Rouche’s theorem
to the circle γn(δ) = {λ : |λ− λ0

n| 6 δ} and conclude that for sufficiently large n, there exist
only one zero λn of the function ∆(λ) in γn(δ). Since δ > 0 is arbitrary, then

λn = λ0
n + εn, εn = o(1), n→∞. (3.18)

Substituting (3.18) into (3.11) and taking into consideration the relations

∆0(λ0
n) =

1

2
(1 +

1

α
) cosλ0

nµ
+(π) +

1

2
(1− 1

α
) cosλ0

nµ
−(π) = 0,

sin εnµ
+(π) ∼ εnµ

+(π), cos εnµ
+(π) ∼ 1, n→∞,

we get

εn =
dn

λ0
n + εn

+
εn

λ0
n + εn

∼
dn +

∼
kn

λ0
n + εn

(3.19)

where

dn =
h+ sinλ0

nµ
+(π) + h− sinλ0

nµ
−(π)

1
2
(1 + 1

α
)µ+(π) sinλ0

nµ
+(π) + 1

2
(1− 1

α
)µ−(π) sinλ0

nµ
−(π)

,

∼
kn = k0(λ0

n + εn) and
∼
dn =

h+µ+(π) cosλ0
nµ

+(π) + h−µ−(π) cosλ0
nµ
−(π)

1
2
(1 + 1

α
)µ+(π) sinλ0

nµ
+(π) + 1

2
(1− 1

α
)µ−(π) sinλ0

nµ
−(π)

.

Since 1
λ0n+εn

= O( 1
n
), εn

λ0n+εn
= o( 1

n
), n → ∞, we have that dn,

∼
dn are bounded,

∼
kn ∈ l2 and

(3.19) implies

εn = O(
1

n
), n→∞.

Using (3.19) once more, we can obtain more precisely that

εn =
dn
λ0
n

+
kn
n
, kn ∈ l2, n→ +∞, (3.20)

where kn = µ+(π)
π

∼
kn +O( 1

n
), n→∞. The prove is complete.
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4. Spectral Expansion Formula

Theorem 2. 1) The system of eigenfunftions {ϕ(x, λn)}n>1 of boundary value problem (1.1),
(1.2) is complete in L2,ρ(0, π);

2) If f(x) is an absolutely continuous function on the segment [0,π], and f ′(0) = f(π) = 0,
then

f(x) =
∞∑
n=1

anϕ(x, λn), (4.1)

where

an =
1

αn

∫ π

0

f(t)ϕ(t, λn)ρ(t)dt, (4.2)

and series (4.1) converges uniformly on [0, π];
3) For f ∈ L2,ρ(0, π) series (4.1) converges in L2,ρ(0, π), moreover, the Parseval identity∫ π

0

|f(x)|2 ρ(x)dx =
∞∑
n=1

αn |an|2 (4.3)

holds.

Proof. Let ψ(x, λ) be a solution of equation (1.1) under the initial conditions (1.5). Denote

G(x, t;λ) = − 1

∆(λ)

{
ψ(x, λ)ϕ(t, λ), x < t
ϕ(x, λ)ψ(t, λ), t < x

(4.4)

and let us consider the function

Y (x, λ) =

∫ π

0

ρ(t)f(t)G(x, t;λ)dt (4.5)

which is a solution to the boundary value problem

−Y ′′(x, λ) + ρ(x)Y (x, λ) = λ2ρ(x)Y (x, λ)− f(x)ρ(x), (4.6)

Y ′(0, λ) = 0, Y (π, λ) = 0.

Using (1.9), we obtain

Res
λ=λn

Y (x, λ) = − 1

2αnλn
ϕ(x, λn)

∫ π

0

ρ(t)f(t)ϕ(t, λn)dt. (4.7)

Let f(x) ∈ L2,ρ(0, π) be such that∫ π

0

ρ(t)f(t)ϕ(t, λn)dt = 0 n = 1, 2, 3, . . . .

Then, from (4.7), we have Res
λ=λn

Y (x, λ) = 0. Hence, for fixed x ∈ [0, π], function Y (x, λ) is entire

with respect to λ. On the other hand, substituting (3.1), (3.2) and (3.15) into (4.5), we see that
that for a fixed δ > 0 and a sufficiently large λ∗ > 0 :

|Y (x, λ)| 6 Cδ
|λ|
, λ ∈ Gδ, |λ| ≥ λ∗.

Using the maximum principle for module of analytic functions and Liouville theorem, we
conclude that Y (x, λ) ≡ 0. This fact and (4.6) imply that f(x) = 0 a.e. on [0, π]. Thus,
statement 1) of the theorem is proved.



ON AN INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE OPERATOR . . . 133

Let f ∈ AC[0, π]. We rewrite function Y (x, λ) as

Y (x, λ) = − 1

λ2∆(λ)

{
ψ(x, λ)

∫ x

0

(−ϕ′′(t, λ) + q(t)ϕ(t, λ)) f(t)dt+

+ϕ(x, λ)

∫ π

x

(−ψ′′(t, λ) + q(t)ψ(t, λ)) f(t)dt

}
.

Integrating by parts the term with the second-order derivatives and taking into consideration
the conditions f ′(0) = 0, f(π) = 0, we obtain

Y (x, λ) =
f(x)

λ2
− 1

λ2
(Z1(x, λ) + Z2(x, λ)) , (4.8)

where
Z1(x, λ) =

1

∆(λ)

[
ψ(x, λ)

∫ x

0

g(t)ϕ′(t, λ)dt+ ϕ(x, λ)

∫ π

x

g(t)ψ′(t, λ)dt

]
.

Here g(t) = f ′(t),

Z2(x, λ) =
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ(t, λ))f(t)q(t)dt+ ϕ(x, λ)

∫ π

x

ψ(t, λ))f(t)q(t)dt− ϕ(x, λ)f(π)

]
.

We consider the contour integral

IN(x) =
1

2πi

∫
Γn

λY (x, λ)dλ,

where Γn = {λ : |λ| = |λ0
N |+

γ
2
} is a counter-clockwise oriented contour.

By means of the residue theorem we have

IN(x) = 2
N∑
n=1

Res
λ=λn

Y (x, λ) =
N∑
n=1

anϕ(x, λn) (4.9)

where
an =

1

αn

∫ π

0

ρ(t)f(t)ϕ(t, λn)dt.

On the other hand, taking into consideration (4.8), we have

IN(x) = f(x)− 1

2πi

∫
ΓN

1

λ
(Z1(x, λ) + Z2(x, λ))dλ. (4.10)

Comparing (4.9) and (4.10), we obtain

f(x) =
N∑
n=1

anϕ(x, λn) + ξN(x),

where
ξN(x) =

1

2πi

∫
ΓN

1

λ
(Z1(x, λ) + Z2(x, λ))dλ.

Therefore, in order to prove the item 2) of the theorem, it suffices to show that

lim
N→∞

max
06x6π

|ξN(x)| = 0 (4.11)

From (3.1), (3.2) and (3.15) it follows that for fixed δ > 0 and sufficiently large λ∗ > 0

max
06x6π

|Z2(x, λ)| 6 C2

|λ|
, λ ∈ Gδ, |λ| > λ∗, C2 > 0. (4.12)

Let us show that
lim
|λ|→∞
λ∈Gδ

max
06x6π

|Z1(x, λ)| = 0. (4.13)
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First we suppose that g(t) is absolutely continuous on [0, π]. In this case, integration by parts
gives

Z1(x, λ) = − 1

∆(λ)

{
ψ(x, λ)

∫ x

0

ϕ(t, λ)g′(t)dt+ ϕ(x, λ)

∫ π

x

ψ(t, λ)g′(t)dt

}
.

Therefore, similarly to Z2(x, λ), we have

max
06x6π

|Z1(x, λ)| 6 C1

|λ|
, λ ∈ Gδ, |λ| > λ∗, C1 > 0.

In the general case, we fix ε > 0 and choose an absolutely continuous function gε(t) such that∫ π

0

|gε(t)− g(t)| dt < ε.

Then, using estimates (3.1), (3.2) and (3.15), one can find λ∗∗ > 0 such that for λ ∈ Gδ,
|λ| > λ∗∗ the relation

Z1(x, λ) =
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ′(t, λ)(g(t)− gε(t))dt+ ϕ(x, λ)

∫ π

x

ψ′(t, λ)(g(t)− gε(t))dt
]

+

+
1

∆(λ)

[
ψ(x, λ)

∫ x

0

ϕ(t, λ)g′ε(t)dt− ϕ(x, λ)

∫ π

x

ψ(t, λ)g′ε(t)dt

]
yields

max
06x6π

|Z1(x, λ)| 6 C

∫ π

0

|gε(t)− g(t)| dt+

∼
C(ε)

|λ|
< Cε +

∼
C(ε)

|λ|
, λ ∈ Gδ, |λ| > λ∗∗.

Therefore,
lim
|λ|→∞
λ∈Gδ

max
06x6π

|Z1(x, λ)| 6 Cε.

Since ε is an arbitrary positive number, we arrive at identity (4.13). Relations (4.12), (4.13)
immediately imply (4.11), and thus, statement 2) of the theorem is proved.

System of eigenfunction {ϕ(x, λn)}n>1 is complete and orthogonal in L2,ρ(0, π). Therefore, it
forms the orthogonal basis in L2,ρ(0, π) and Parseval identity (4.3) is valid.

5. Weyl solution, Weyl function

Let Φ(x, λ) be the solution of equation (1.1) satisfying the conditions Φ′(0, λ) = 1,
Φ(π, λ) = 0. Denote by C(x, λ) the solution of equation (1.1) satisfying the initial conditions
C(0, λ) = 0, C ′(0, λ) = 1. Then, the solution ψ(x, λ) can be represented as

ψ(x, λ) = ψ(0, λ)ϕ(x, λ) + ∆(λ)C(x, λ) (5.1)

or
ψ(x, λ)

∆(λ)
= C(x, λ) +

ψ(0, λ)

∆(λ)
ϕ(x, λ). (5.2)

Denote

M(λ) :=
ψ(0, λ)

∆(λ)
. (5.3)

It is clear that
Φ(x, λ) = C(x, λ) +M(λ)ϕ(x, λ). (5.4)

Functions Φ(x, λ) andM(λ) = Φ(0, λ) are respectively called the Weyl solution and the Weyl
function of boundary value problem (1.1), (1.2). The Weyl function is a meromorphic function
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having simple poles at points λn being the eigenvalues of boundary value problem (1.1), (1.2).
Relations (5.2), (5.4) yield

Φ(x, λ) =
ψ(x, λ)

∆(λ)
. (5.5)

It can be shown that
< ϕ(x, λ),Φ(x, λ) >= 1. (5.6)

Theorem 3. If M(λ) =
∼
M(λ), then L =

∼
L; that is, the boundary value problem (1.1), (1.2)

is uniquely determined by the Weyl function.

Proof. We introduce the matrix P (x, λ) = [Pij(x, λ)]i,j=1,2 by the formula

P (x, λ)

( ∼
ϕ(x, λ)

∼
Φ(x, λ)

∼
ϕ
′
(x, λ)

∼
Φ′(x, λ)

)
=

(
ϕ(x, λ) Φ(x, λ)
ϕ′(x, λ) Φ′(x, λ)

)
. (5.7)

By (5.7) we have

ϕ(x, λ) = P11(x, λ)
∼
ϕ(x, λ) + P12(x, λ)

∼
ϕ′(x, λ),

Φ(x, λ) = P11(x, λ)
∼
Φ(x, λ) + P12(x, λ)

∼
Φ′(x, λ),

(5.8)

or

P11(x, λ) = ϕ(x, λ)
∼
Φ′(x, λ)− Φ(x, λ)

∼
ϕ′(x, λ),

P12(x, λ) = −ϕ(x, λ)
∼
Φ(x, λ) + Φ(x, λ)

∼
ϕ(x, λ).

(5.9)

Taking into consideration equations (5.5) and (5.9), we substitute (5.4) into (5.9) to obtain

P11(x, λ) = 1 + 1
∆(λ)

[
ϕ(x, λ)(

∼
ψ′(x, λ)− ψ′(x, λ))− ψ(x, λ)(

∼
ϕ′(x, λ)− ϕ′(x, λ))

]
,

P12(x, λ) = 1
∆(λ)

[
ψ(x, λ)

∼
ϕ(x, λ)− ϕ(x, λ)

∼
ψ(x, λ)

]
.

(5.10)

By (3.1), (3.2), (3.15) and equation (5.10) we get

lim
|λ|→∞

max
06x6π

|P11(x, λ)− 1| = lim
|λ|→∞

max
06x6π

|P12(x, λ)| = 0. (5.11)

Hence, if we take into consideration equations (5.4) and (5.9), we get

P11(x, λ) = ϕ(x, λ)
∼
C ′(x, λ)− C(x, λ)

∼
ϕ′(x, λ) + (

∼
M(λ)−M(λ))ϕ(x, λ)

∼
ϕ′(x, λ)

P12(x, λ) = C(x, λ)
∼
ϕ(x, λ)−

∼
C(x, λ)ϕ(x, λ) + (M(λ)−

∼
M(λ))ϕ(x, λ)

∼
ϕ(x, λ).

Therefore if M(λ) =
∼
M(λ), then P11(x, λ) and P12(x, λ) are entire functions for each fixed

x. It can be easily seen from (5.11) that P11(x, λ) = 1 and P12(x, λ) = 0. Substituting it into
(5.8), we get ϕ(x, λ) ≡ ∼

ϕ(x, λ) and Φ(x, λ) ≡
∼
Φ(x, λ) for each x and λ. Hence, we arrive at

q(x) ≡ ∼q(x).

Theorem 4. The expression

M(λ) =
1

2λ0α0(λ0 − λ)
+
∞∑
n=1

1

αn(λ2
n − λ2)

(5.12)

holds true.
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Proof. Using (1.9), we calculate
·

∆(λn) = 2λnαnβn,

where
·

∆(λ) = d
dλ

∆(λ). Taking into account the last identities, in accordance with (5.3) we
calculate:

Res
λ=λn

M (λ) =
ψ(0, λn)
·

∆(λn)
=

βn
·

∆(λn)
=

1

2λnαn
. (5.13)

Using (3.2), (3.15) and (5.3), we have

|M(λ)| 6 Cδ
|λ|
, λ ∈ Gδ.

Thus, we get
lim
|λ|→∞

|M(λ)| = 0. (5.14)

Now, let us consider the contour integral

JN(λ) =
1

2πi

∫
ΓN

M(µ)

µ− λ
dµ, λ ∈ IntΓN ,

where the contour ΓN =
{
µ : |µ| = |λ0

N |+
γ
2

}
is passed counter-clockwise.

Owing to (5.14), we have lim
N→∞

JN(λ) = 0. On the other hand, by the residue theorem, the
identity λ−n = −λn and (5.13), we have

JN(λ) = M(λ) +
N∑

n=−N

1

2λnαn(λn − λ)
=

= M(λ) +
1

2λ0α0(λ0 − λ)
+

N∑
n=1

1

αn(λ2
n − λ2)

and as N →∞, we arrive at (5.12).

Theorem 5. If λn =
∼
λn, αn =

∼
αn for all n ∈ Z, then L =

∼
L. That is, problem (1.1), (1.2)

is uniquelly determined by its spectral data.

Proof. Since λn =
∼
λn, αn =

∼
αn for all n ∈ Z, considering formula (5.12), we haveM(λ) =

∼
M(λ).

Using Theorem 9, we arrive at L =
∼
L.
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