УДК 517.98

ОБРАТИМОСТЬ ЛИНЕЙНЫХ ОТНОШЕНИЙ, ПОРОЖДЕННЫХ ИНТЕГРАЛЬНЫМ УРАВНЕНИЕМ С ОПЕРАТОРНЫМИ МЕРАМИ

В.М. БРУК

Аннотация. На ограниченном замкнутом интервале рассматривается интегральное уравнение с операторными мерами в бесконечномерном случае. В терминах граничных значений устанавливаются необходимые и достаточные условия, при которых линейные отношения S, порожденные этим интегральным уравнением, обладают свойствами: S замкнуто; S обратимо; ядро S конечномерно; S имеет замкнутую область значений; S непрерывно обратимо и другими. Результаты применяются к системе интегральных уравнений, переходящей в квазидифференциальное уравнение в случае абсолютно непрерывных мер, и к интегральному уравнению с многозначным импульсным воздействием.

Ключевые слова: интегральное уравнение, операторная мера, гильбертово пространство, линейное отношение, спектр, квазипроизводная, импульсное воздействие.

Mathematics Subject Classification: 47A06, 47A10, 34B27

1. Введение

Интегральные уравнения с операторными мерами являются достаточно общими. Например, они охватывают интегро-дифференциальные уравнения с интегралами Стилтьеса [1], дифференциальные уравнения, коэффициенты которых – обобщенные функции [2] (способ сведения интегрального уравнения к уравнению из [2] приводится в [3]).

В данной работе на отрезке [a,b] рассматривается интегральное уравнение

$$y(t) = y_0 - iJ \int_{t_0}^t (d\mathbf{p})y(s) - iJ \int_{t_0}^t (d\mathbf{m})f(s),$$
 (1)

где $\int_{t_0}^t$ обозначает $\int_{[t_0,t)}$, если $t_0 < t$; $-\int_{[t,t_0)}$, если $t_0 > t$; и 0, если $t_0 = t$. Здесь \mathbf{p} , \mathbf{m} – операторные меры, определенные на борелевских множествах $\Delta \subset [a,b]$ и принимающие значения в множестве линейных ограниченных операторов, действующих в сепарабельном гильбертовом пространстве H, причем мера \mathbf{m} неотрицательна (эти меры продолжены на отрезок $[a_0,b_0] \supset (a_0,b_0) \supset [a,b]$ способом, указанным ниже); J – оператор в H со свойствами: $J^* = J$, $J^2 = E$ (E – тождественный оператор), $y_0 \in H$; y – неизвестная функция, $f \in \mathfrak{H} = L_2(H,d\mathbf{m};a,b)$ (\mathfrak{H} определено ниже). Предполагается, что меры \mathbf{p} , \mathbf{m} имеют ограниченную вариацию на [a,b].

Отметим, что случай бесконечномерного H существенно отличается от конечномерного. Это объясняется тем фактом, что достаточно сложно устроено пространство $\mathfrak{H}=L_2(H,d\mathbf{m};a,b)$. Элементы этого пространства – необязательно функции со значениями в H.

V.M. Bruk, Invertibility of linear relations generated by integral equation with operator measures.

[©] БРУК В.М. 2014.

Работа поддержана РФФИ (грант 13-01-00378).

Поступила 15 мая 2014 г.

Уравнение (1) вместе с граничными условиями порождает, вообще говоря, не линейные операторы, а линейные отношения (многозначные операторы). Если граничные условия нулевые, то соответствующее отношение называется минимальным, а при отсутствии граничных условий – максимальным. Всякое линейное отношение, являющееся сужением максимального отношения L и расширением минимального L_0 , может быть определено с помощью некоторого линейного отношения θ , входящего в граничные условия, причем взаимно однозначным является соответствие между такими отношениями θ и определяемыми ими отношениями L_{θ} , $L_0 \subset L_{\theta} \subset L$. В связи с этим возникает задача: выделить граничные условия (т.е. отношения θ), которые определяют отношения L_{θ} с некоторыми наперед заданными свойствами.

В данной работе рассматриваются свойства (называемые состояниями) из работ [4], [5] и устанавливается, что отношение L_{θ} тогда и только тогда обладает соответствующим свойством, когда то же свойство имеет отношение θ . Среди этих свойств такие, как обратимость, непрерывная обратимость, фредгольмовость и другие. Доказательства основаны на утверждениях об абстрактных пространствах граничных значений из работ [6], [7].

В качестве приложения рассматривается система интегральных уравнений, переходящая в случае абсолютно непрерывных мер в квазидифференциальное уравнение с квазипроизводными в смысле работ [8], [9]. В последнем разделе изучается интегральное уравнение с импульсным воздействием. Подобные уравнения описывают поведение развивающихся во времени процессов, подверженных кратковременным возмущениям. Математическая модель таких процессов имеется, например, в монографии [10, гл. 1, п. 1, с. 5]. В данной работе импульсное воздействие задается линейным отношением, т.е. воздействие является многозначным. В статье [11] рассматривались дифференциальные операторы, порожденные сильно непрерывным семейством эволюционных операторов в банаховом пространстве, и установлены необходимые и достаточные условия непрерывной обратимости и фредгольмовости таких дифференциальных операторов с многозначными импульсными воздействиями. Метод (с незначительными изменениями) из данной работы применим к операторам, рассмотренным в [11].

Отметим, что линейные отношения впервые были использованы для описания в терминах граничных условий расширений дифференциальных операторов в статье [12].

2. Вспомогательные утверждения

Пусть H — сепарабельное гильбертово пространство со скалярным произведением (\cdot, \cdot) и нормой $\|\cdot\|$. Рассмотрим функцию $\Delta \to \mathbf{P}(\Delta)$, определенную на борелевских множествах $\Delta \subset [a,b]$ и принимающую значения в множестве ограниченных линейных операторов, действующих в H. Функция \mathbf{P} называется операторной мерой на [a,b] (см., например, [13, гл. 5, п. 1, с. 324]), если \mathbf{P} равна нулю на пустом множестве, и для любых непересекающихся борелевских множеств Δ_n справедливо равенство

$$\mathbf{P}\left(\bigcup_{n=1}^{\infty} \Delta_n\right) = \sum_{n=1}^{\infty} \mathbf{P}(\Delta_n)$$

с рядом, сходящимся в слабой операторной топологии. Через $\mathbf{V}_{\Delta}(\mathbf{P})$ обозначим

$$\mathbf{V}_{\Delta}(\mathbf{P}) = \rho(\Delta) = \sup \sum_{j} \|\mathbf{P}(\Delta_{j})\|,$$

где sup распространяется на конечные суммы непересекающихся борелевских множеств $\Delta_j \subset \Delta$. Число $\mathbf{V}_{\Delta}(\mathbf{P})$ называется вариацией меры \mathbf{P} на борелевском множестве Δ .

Пусть мера **P** имеет ограниченную вариацию на [a,b]. Тогда для ρ -почти всех $\xi \in [a,b]$ существует такая операторная функция $\xi \to \Psi(\xi)$ со значениями в множестве линейных ограниченных операторов в H, $\|\Psi(\xi)\| = 1$, что для любого борелевского множества $\Delta \subset [a,b]$

справедливо равенство

$$\mathbf{P}(\Delta) = \int_{\Delta} \Psi(\xi) d\rho. \tag{2}$$

Функция Ψ определяется однозначно с точностью до значений на множестве нулевой ρ -меры. Интеграл (2) сходится в смысле обычной нормы операторов ([13, гл. 5, теор. 1.2, с. 325]). Из (2) следует, что измеримые по Борелю ограниченные функции со значениями в H интегрируемы по мере \mathbf{P} .

Далее всякую меру \mathbf{P} , имеющую ограниченную вариацию, продолжаем на некоторый отрезок $[a_0,b_0]\supset (a_0,b_0)\supset [a,b]$, полагая $\mathbf{P}(\Delta)=0$ для всех борелевских множеств $\Delta\subset [a_0,b_0]\setminus [a,b]$.

На множестве ступенчатых на отрезке $[a_0,b_0]$ функций, принимающих значения в H, введем квазискалярное произведение

$$(x,y)_{\mathbf{m}} = \int_{a_0}^{b_0} ((d\mathbf{m})x(t), y(t)).$$

Отождествляя с нулем функции y, для которых $(y,y)_{\mathbf{m}}=0$, и производя пополнение, получим гильбертово пространство, обозначаемое $\mathfrak{H}=L_2(H,d\mathbf{m};a,b)$. Элементы $\mathfrak{H}=0$ – это классы функций, отождествленных между собой по норме $\|y\|_{\mathbf{m}}=(y,y)_{\mathbf{m}}^{1/2}$. Чтобы не усложнять терминологию, класс функций с представителем y обозначаем тем же символом и пишем $y \in \mathfrak{H}$. Равенства между функциями из \mathfrak{H} понимаются как равенства соответствующих классов эквивалентности. Описание пространства \mathfrak{H} имеется в [14] (см. также библиографию там).

Пространство \mathfrak{H} и рассматриваемые ниже линейные отношения не изменятся, если мы заменим интервал (a_0,b_0) на (a'_0,b'_0) , где точки a'_0,b'_0 вводятся также, как точки a_0,b_0 , т.е. $[a'_0,b'_0]\supset (a'_0,b'_0)\supset [a,b]$ и $\mathbf{p}(\Delta)=\mathbf{m}(\Delta)=0$ для всех борелевских множеств $\Delta\subset [a'_0,b'_0]\backslash [a,b]$.

Рассмотрим уравнения

$$y(t) = y_0 - iJ \int_{t_0}^t (d\mathbf{p})y(s) - i\lambda J \int_{t_0}^t (d\mathbf{m})y(s) - iJ \int_{t_0}^t (d\mathbf{m})f(s),$$
 (3)

$$z(t) = z_0 - iJ \int_{t_0}^t (d\mathbf{p}^*) z(s) - i\bar{\lambda} J \int_{t_0}^t (d\mathbf{m}) z(s) - iJ \int_{t_0}^t (d\mathbf{m}) g(s), \tag{4}$$

где $y_0, z_0 \in H, f, g \in \mathfrak{H}, \lambda \in \mathbb{C}, t, t_0 \in [a_0, b_0]$. Отметим, что уравнение (1) получается из (3) при $\lambda = 0$.

Из [3], [14] вытекает, что для любых $y_0, z_0 \in H$, $f, g \in \mathfrak{H}$, $\lambda \in \mathbb{C}$ уравнения (3), (4) имеют единственные решения. Эти решения непрерывны слева и $y_0 = y(t_0)$, $z_0 = z(t_0)$. Через $W(t, \lambda)$, $U(t, \bar{\lambda})$ обозначим операторные решения уравнений

$$W(t,\lambda)x_0 = x_0 - iJ \int_{t_0}^t (d\mathbf{p})W(s,\lambda)x_0 - i\lambda J \int_{t_0}^t (d\mathbf{m})W(s,\lambda)x_0,$$

$$U(t,\bar{\lambda})\tilde{x}_0 = \tilde{x}_0 - iJ \int_{t_0}^t (d\mathbf{p}^*)U(s,\bar{\lambda})\tilde{x}_0 - i\bar{\lambda}J \int_{t_0}^t (d\mathbf{m})U(s,\bar{\lambda})\tilde{x}_0,$$

где $x_0, \tilde{x}_0 \in H$. Из [3], [14] следует, что $U^*(t, \bar{\lambda})JW(t, \lambda) = J$, $W(t, \lambda)JU^*(t, \bar{\lambda}) = J$ и функции $\lambda \to W(t, \lambda)$, $\lambda \to U(t, \lambda)$ голоморфны при всех $\lambda \in \mathbb{C}$ при каждом фиксированном $t \in [a_0, b_0]$. Повторяя доказательство аналогичных утверждений из [3], [14], получим следующее утверждение.

Лемма 1. Функции y, z тогда и только тогда являются решением уравнений (3), (4) соответственно, когда y, z имеют вид

$$y(t) = W(t,\lambda)y_0 - W(t,\lambda)iJ \int_{t_0}^t U^*(s,\bar{\lambda})(d\mathbf{m})f(s),$$
(5)

$$z(t) = U(t, \bar{\lambda})z_0 - U(t, \bar{\lambda})iJ \int_{t_0}^t W^*(s, \lambda)(d\mathbf{m})g(s).$$
(6)

3. МАКСИМАЛЬНОЕ И МИНИМАЛЬНОЕ ОТНОШЕНИЯ

Пусть B_1 , B_2 – банаховы пространства. Под линейным отношением T понимается любое линейное многообразие $T \subset \mathbf{B}_1 \times \mathbf{B}_2$. Терминологию по линейным отношениям можно найти, например, в [4], [5]. Далее используются следующие обозначения: $\{\cdot,\cdot\}$ – упорядоченная пара; $\ker T$ – множество элементов $x \in \mathbf{B}_1$ таких, что $\{x,0\} \in T$; $\ker T$ – множество упорядоченных пар вида $\{x,0\} \in T$; $\mathcal{D}(T)$ – область определения T, т.е. множество элементов $x \in \mathbf{B}_1$, для каждого из которых существует элемент $x' \in \mathbf{B}_2$ такой, что пара $\{x,x'\}\in T; \mathcal{R}(T)$ – область значений T, т.е. множество элементов $x'\in \mathbf{B}_2$, для каждого из которых существует элемент $x \in \mathbf{B}_1$ такой, что пара $\{x, x'\} \in \mathbf{T}; \mathbf{T}^{-1}$ – отношение, обратное к T, т.е отношение, состоящее из пар $\{x', x\}$, где $\{x, x'\} \in T$. Отношение T называется сюръективным, если $\mathcal{R}(T) = \mathbf{B}_2$; обратимым или инъективным, если $\ker T = \{0\}$ (т.е. отношение T^{-1} является оператором); непрерывно обратимым, если оно замкнуто, обратимо и сюръективно (т.е. T^{-1} является ограниченным всюду определенным оператором). Суммой отношений $T_1, T_2 \subset \mathbf{B}_1 \times \mathbf{B}_2$ называется отношение $T_1 + T_2$, состоящее из всех пар вида $\{x,x_1+x_2\}$, где $x\in\mathcal{D}(\mathrm{T}_1)\cap\mathcal{D}(\mathrm{T}_2),\,\{x,x_1\}\in\mathrm{T}_1,\,\{x,x_2\}\in\mathrm{T}_2.$ Произведением отношений $T \subset \mathbf{B}_1 \times \mathbf{B}_2$, $S \subset \mathbf{B}_2 \times \mathbf{B}_3$ называется отношение ST, состоящее из пар $\{x_1, x_3\} \in \mathbf{B}_1 \times \mathbf{B}_3$, для каждой из которых существует такой элемент x_2 , что $\{x_1, x_2\} \in T$, $\{x_2, x_3\} \in S$.

Далее $\rho(T)$ обозначает резольвентное множество замкнутого отношения T, т.е. множество точек $\lambda \in \mathbb{C}$, для которых отношение $(T-\lambda E)^{-1}$ является ограниченным всюду определенным оператором; $\sigma_c(T)$ ($\sigma_r(T)$) – непрерывный (остаточный) спектр отношения T, т.е. множество таких точек $\lambda \in \mathbb{C}$, что отношение $(T-\lambda E)^{-1}$ является плотно определенным и неограниченным (неплотно определенным) оператором; $\sigma_p(T)$ – точечный спектр отношения T, т.е. множество точек $\lambda \in \mathbb{C}$, для которых отношение $(T-\lambda E)^{-1}$ не является оператором. Линейные операторы считаются линейными отношениями, поэтому запись $\{x_1, x_2\} \in T$ используется и для оператора T. Поскольку все рассматриваемые отношения являются линейными, слово "линейное" часто будет опускаться.

Пусть L' – отношение, состоящее из пар $\{\tilde{y}, f\} \in \mathfrak{H} \times \mathfrak{H}$, для каждой из которых существует пара $\{y, f\}$, отождествленная в $\mathfrak{H} \times \mathfrak{H}$ с $\{\tilde{y}, \tilde{f}\}$ и удовлетворяющая уравнению (1). Через L обозначим замыкание L' и назовем L максимальным отношением, порожденным интегральным уравнением (1). Отношение L, вообще говоря, не будет оператором, так как может случиться, что функция y отождествлена с нулем в \mathfrak{H} , а f отлична от нуля. Минимальное отношение L_0 определим как сужение L' на множество функций y таких, что $y(a_0) = y(b_0) = 0$, где y – решение (1).

Замечание 1. Определение точек a_0 , b_0 и равенства $\mathbf{p}(\Delta) = \mathbf{m}(\Delta) = 0$, выполняющиеся для всех борелевских множеств $\Delta \subset [a_0,b_0] \setminus [a,b]$, влекут $y(a_0) = \lim_{t \to a-0} y(t)$, $y(b_0) = \lim_{t \to b+0} y(t)$. Максимальное и минимальное отношения не изменятся, если мы заменим интервал (a_0,b_0) на (a'_0,b'_0) , где точки a'_0 , b'_0 определяются так же, как a_0 , b_0 , а меры \mathbf{p} , \mathbf{m} продолжаются на интервал (a'_0,b'_0) так же, как на (a_0,b_0) . Поэтому минимальное отношение L_0 может быть определено как сужение L' на множество функций y, финитных на (a_0,b_0) , где y – решение (1).

Обозначим через Q_0 (через \widehat{Q}_0) множество элементов $x \in H$, для которых при $\mu \in \mathbb{C}$ функция $t \to W(t,\mu)x$ ($t \to U(t,\mu)x$ соответственно) отождествлена с нулем в \mathfrak{H} . Положим $Q = H \ominus Q_0$ и $\widehat{Q} = H \ominus \widehat{Q}_0$. Множества Q_0 , \widehat{Q}_0 (и, следовательно, Q, \widehat{Q}) не зависят от замены точки μ другой точкой $\lambda \in \mathbb{C}$. Это вытекает из следующих равенств, получаемых из (5), (6),

$$W(t,\lambda)c = W(t,0)c - \lambda W(t,0)iJ \int_{t_0}^t U^*(s,0)(d\mathbf{m})W(s,\lambda)c, \tag{7}$$

$$W(t,0)c = W(t,\lambda)c + \lambda W(t,\lambda)iJ \int_{t_0}^t U^*(s,\bar{\lambda})(d\mathbf{m})W(s,0)c, \quad c \in H.$$
(8)

Соответствующие равенства для $U(t,\lambda),\,U(t,0)$ получаются из (7), (8) заменой W на U и U на W.

На линейных многообразиях Q и \widehat{Q} введем нормы равенствами

$$||c||_{-} = \left(\int_{a_0}^{b_0} ((d\mathbf{m})W(s,\mu)c, W(s,\mu)c) \right)^{1/2}, \ \mu \in \mathbb{C}, \ c \in Q,$$
 (9)

$$\|\widehat{c}\|_{-} = \left(\int_{a_0}^{b_0} ((d\mathbf{m})U(s,\mu)\widehat{c}, U(s,\mu)\widehat{c})\right)^{1/2}, \quad \mu \in \mathbb{C}, \ \widehat{c} \in \widehat{Q}.$$
 (10)

Из формулы (2), в которой мера $\mathbf P$ заменена на $\mathbf m$, получим

$$||c||_{-} = \left(\int_{a_0}^{b_0} (\Psi(s)W(s,\mu)c, W(s,\mu)c) \, d\rho \right)^{1/2} \leqslant \gamma ||c||, \quad \gamma > 0, \quad c \in Q.$$
 (11)

Через Q_- , \widehat{Q}_- обозначим пополнение Q, \widehat{Q} по нормам (9), (10) соответственно. Из (7), (8) следует, что замена μ на $\lambda \in \mathbb{C}$ в (9) (или в (10)) приводит к тому же множеству Q_- (\widehat{Q}_- соответственно) с эквивалентной нормой. Из (11) и аналогичного неравенства для нормы (10) вытекает, что пространства Q_- , \widehat{Q}_- можно рассматривать как пространства с негативной нормой относительно Q [13, гл. 1, п. 1, с. 45]. Через Q_+ , \widehat{Q}_+ обозначим соответствующие пространства с позитивной нормой. Из определения пространств с позитивной и негативной нормами, следует, что $Q_+ \subset Q$, $\widehat{Q}_+ \subset Q$.

Предположим, что последовательности $\{c_n\}$ и $\{\hat{c}_n\}$ ($c_n \in Q, \hat{c}_n \in \hat{Q}$) сходятся соответственно в Q_- и \hat{Q}_- к $c_0 \in Q_-$ и $\hat{c}_0 \in \hat{Q}_-$. Тогда последовательности $\{W(\cdot,\lambda)c_n\}$, $\{U(\cdot,\lambda)\hat{c}_n\}$ фундаментальны в \mathfrak{H} и поэтому сходятся в \mathfrak{H} к некоторым элементам из \mathfrak{H} . Через $W(\cdot,\lambda)c_0$ и $U(\cdot,\lambda)\hat{c}_0$ обозначим эти элементы, а через $W(\lambda), \ U(\lambda)$ – операторы $c \to W(\cdot,\lambda)c$ и $c \to U(\cdot,\lambda)\hat{c}$, соответственно, где $c \in Q_-$, $c \in \hat{Q}_-$. Операторы $W(\lambda): Q_- \to \mathfrak{H}$, $U(\lambda): Q_- \to \mathfrak{H}$ непрерывны, взаимно однозначны и их области значений замкнуты. Поэтому сопряженные операторы $W^*(\lambda), \ U^*(\lambda)$ непрерывно отображают \mathfrak{H} на $Q_+, \ \hat{Q}_+$ соответственно. Для всех $x \in Q$, $x \in \mathcal{H}$ имеем

$$(f, \mathcal{W}(\lambda)x)_{\mathbf{m}} = \int_{a_0}^{b_0} ((d\mathbf{m})f(s), W(s, \lambda)x) = \int_{a_0}^{b_0} (W^*(s, \lambda)(d\mathbf{m})f(s), x) = (\mathcal{W}^*(\lambda)f, x).$$

Аналогичное равенство выполняется для оператора $\mathcal{U}(\lambda)$. Отсюда, принимая во внимание, что Q, \widehat{Q} плотно вкладываются в Q_- и \widehat{Q}_- соответственно, получим

$$\mathcal{W}^*(\lambda)f = \int_{a_0}^{b_0} W^*(s,\lambda)(d\mathbf{m})f(s), \quad \mathcal{U}^*(\lambda)g = \int_{a_0}^{b_0} U^*(s,\lambda)(d\mathbf{m})g(s). \tag{12}$$

Таким образом, доказано следующее утверждение.

Лемма 2. Операторы $W^*(\lambda)$, $U^*(\lambda)$ непрерывно отображают \mathfrak{H} на Q_+ , \widehat{Q}_+ соответственно и имеют вид (12).

Следующая теорема и следствия доказываются аналогично соответствующим утверждениям из [3], [14], [15].

Теорема 1. Пара $\{\tilde{y}, \tilde{f}\} \in \mathfrak{H} \times \mathfrak{H}$ тогда и только тогда принадлежит отношению $L - \lambda E$, когда существует пара $\{y, f\}$, отождествленная в $\mathfrak{H} \times \mathfrak{H}$ с $\{\tilde{y}, \tilde{f}\}$, для которой выполняется равенство (5), где $y_0 \in Q_-$, $f \in \mathfrak{H}$.

Следствие 1. *Отношение* L_0 *замкнуто.*

Следствие 2. Область значений отношения $L_0 - \lambda E$ состоит из всех элементов $f \in \mathfrak{H}$, для которых выполняется равенство

$$\mathcal{U}^*(\bar{\lambda})f = \int_{a_0}^{b_0} U^*(s, \bar{\lambda})(d\mathbf{m})f(s) = 0.$$

Следствие 3. Оператор $W(\lambda)$ является непрерывным взаимно однозначным отображением Q_- на $\ker(L-\lambda E)$.

4. Пространства граничных значений и состояния линейных отношений

Далее нам потребуется пространство граничных значений (ПГЗ) отношения $L - \lambda E$. Пусть \mathbf{B}_1 , \mathbf{B}_2 , B_1 , B_2 – банаховы пространства, $T \subset \mathbf{B}_1 \times \mathbf{B}_2$ – замкнутое линейное отношение, $\delta: T \to B_1 \times B_2$ – линейный оператор, $\delta_j = P_j \delta$, j = 1, 2 (P_j обозначает естественную проекцию на множество G_j в декартовом произведении $G = G_1 \times G_2$). Четверка $(B_1, B_2, \delta_1, \delta_2)$ называется ПГЗ для отношения T (см. [6], [7] и библиографию там), если δ непрерывно отображает T на $B_1 \times B_2$, и сужение δ_1 на KerT является взаимно однозначным отображением KerT на B_1 . Определим оператор $\Phi_\delta: B_1 \to B_2$ и отношение T_0 равенствами $\Phi_\delta = \delta_2(\delta_1|_{\mathrm{Ker}T})^{-1}$, $T_0 = \ker \delta$. Отметим, что оператор Φ_δ ограничен. Из определения ПГЗ следует, что между отношениями \widehat{T} со свойством $T_0 \subset \widehat{T} \subset T$ и отношениями $\theta \subset B_1 \times B_2$ существует взаимно однозначное соответствие, определяемое равенством $\delta \widehat{T} = \theta$. В этом случае обозначаем $\widehat{T} = T_\theta$. Подобные обозначения используются далее.

Пусть S — линейное отношение, $S\subset B_1'\times B_2'$, где B_1' , B_2' — банаховы пространства. Следующие условия взяты из $\underline{[4],[5]}$: 1) S замкнуто; 2) $\ker S=\{0\}$; 3) $\dim \ker S<\infty$; 4) отношение S корректно; 5) $\overline{\mathcal{R}(S)}=\mathcal{R}(S)$; 6) $\mathcal{R}(S)$ — замкнутое подпространство в B_2' конечной коразмерности; 7) $\mathcal{R}(S)=B_2'$; 8) S непрерывно обратимо.

Следуя [4], [5], будем говорить, что отношение S находится в состоянии k, если оно удовлетворяет условию k). Условие 4) означает обратимость отношения S и замкнутость области значений $\mathcal{R}(S)$ [5]. Отношение S называется фредгольмовым, если оно удовлетворяет условиям 3), 6).

Теорема 2. Пусть $\mathcal{R}(T) = \mathbf{B}_2$. Отношение T_{θ} тогда и только тогда находится в состоянии k ($1 \leq k \leq 8$), когда в том же состоянии находится отношение $\theta - \Phi_{\delta}$.

Доказательство вытекает из следующей леммы, установленной в [7].

Лемма 3. Отношение T_{θ} замкнуто тогда и только тогда, когда отношение θ замкнуто. Пусть $\mathcal{R}(T) = \mathbf{B}_2$. Тогда справедливы следующие утверждения:

- 1) область значений $\mathcal{R}(T_{\theta})$ замкнута в том и только том случае, когда область значений $\mathcal{R}(\theta-\Phi_{\delta})$ замкнута;
 - 2) dim $\mathbf{B}_2/\overline{\mathcal{R}(T_{\theta})} = \dim B_2/\overline{\mathcal{R}(\theta \Phi_{\delta})};$
 - 3) dim ker $T_{\theta} = \dim \ker(\theta \Phi_{\delta})$.

Построим пространство граничных значений для отношения L. Обозначим $Q_b = W(b_0,0)J\widehat{Q}_+$. Оператор $W(b_0,0)$ взаимно однозначно отображает H на H. Используя последнее равенство, введем в Q_b норму пространства Q_+ . Без ограничения общности можно считать, что $t_0 = a_0$, $W(a_0,\lambda) = E$.

Согласно теореме 1, пара $\{\tilde{y}, \tilde{f}\} \in \mathfrak{H} \times \mathfrak{H}$ тогда и только тогда принадлежит отношению $L - \lambda E$, когда существует пара $\{y, f\}$, отождествленная в $\mathfrak{H} \times \mathfrak{H}$ с $\{\tilde{y}, \tilde{f}\}$, для которой выполняется равенство

$$y(t) = W(t, \lambda)c_{\lambda} + F_{\lambda}(t), \tag{13}$$

где $c_{\lambda} \in Q_{-}$,

$$F_{\lambda}(t) = -W(t,\lambda)iJ \int_{a_0}^t U^*(s,\bar{\lambda})(d\mathbf{m})f(s)ds.$$
 (14)

Каждой паре $\{y,f\}$, представленной в виде (13) при $\lambda=0$, поставим в соответствие пару граничных значений

$$Y = \tilde{\delta}_1 \{ y, f \} = c_0 \in Q_-,$$

$$Y' = \tilde{\delta}_2\{y, f\} = -W(b_0, 0)J \int_{a_0}^{b_0} U^*(s, 0)(d\mathbf{m})f(s)ds \in Q_b.$$

Из (13), (14) следует, что если пары $\{y, f\}, \{\tilde{y}, \tilde{f}\} \in L$ отождествлены между собой в $\mathfrak{H} \times \mathfrak{H}$, то их граничные значения совпадают.

Отметим, что если $c_0 \in Q$ (т.е. пара $\{y, f\} \in L'$), то

$$Y = y(a_0), \quad Y' = y(b_0) - W(b_0, 0)y(a_0). \tag{15}$$

Положим $\tilde{\delta}\{y,f\}=\{Y,Y'\}$. Из теоремы 1, леммы 2 и следствия 3 вытекает, что четверка $(Q_-,Q_b,\tilde{\delta}_1,\tilde{\delta}_2)$ является ПГЗ для отношения L; при этом $\ker \tilde{\delta}=L_0$. Как и выше, L_{θ} – такое линейное отношение, что $L_0\subset L_{\theta}\subset L$ и $\tilde{\delta}L_{\theta}=\theta\subset Q_-\times Q_b$.

Пусть пара $\{y, f\} \in L$. Тогда $\{y, f - \lambda y\} \in L - \lambda E$. Положим $\delta(\lambda)\{y, f - \lambda y\} = \tilde{\delta}\{y, f\}$ и $\delta_j(\lambda) = P_j\delta(\lambda)$, где P_1 , P_2 – естественные проекции $Q_- \times Q_b$ на Q_- , Q_b соответственно. Ясно, что $\tilde{\delta} = \delta(0)$.

Оператор δ непрерывно отображает L на $Q_- \times Q_b$, а оператор, ставящий в соответствие каждой паре $\{y,f\} \in L$ пару $\{y,f-\lambda y\} \in L-\lambda E$, непрерывно и взаимно однозначно отображает L на $L-\lambda E$. Поэтому оператор $\delta(\lambda)$ непрерывно отображает $L-\lambda E$ на $Q_- \times Q_b$. Из (7), (8) следует, что сужение $\delta_1(\lambda)$ на $\mathrm{Ker}(L-\lambda E)$ взаимно однозначно отображает $\mathrm{Ker}(L-\lambda E)$ на Q_- . Таким образом, четверка $(Q_-,Q_b,\delta_1(\lambda),\delta_2(\lambda))$ при любом $\lambda \in \mathbb{C}$ является ПГЗ для отношения $L-\lambda E$. Оператор $\Phi_{\delta(\lambda)} = \delta_2(\lambda)(\delta_1(\lambda)|_{\mathrm{Ker}(L-\lambda E)})^{-1}$ имеет вид

$$\Phi_{\delta(\lambda)} = -\lambda W(b_0, 0) J \int_{a_0}^{b_0} U^*(s, 0) (d\mathbf{m}) W(s, \lambda) ds.$$

Если $c_0 \in Q$, то

$$\Phi_{\delta(\lambda)}c_0 = (W(b_0, \lambda) - W(b_0, 0))c_0. \tag{16}$$

Из теоремы 2 вытекает следующее утверждение.

Теорема 3. Отношение $L_{\theta} - \lambda E$ тогда и только тогда находится в состоянии k, когда в том же состоянии находится отношение $\theta - \Phi_{\delta(\lambda)}$.

Следствие 4. Пусть отношение θ замкнуто. Для принадлежности точки λ точечному спектру $\sigma_p(L_\theta)$ отношения L_θ необходимо и достаточно, чтобы $\ker(\theta - \Phi_{\delta(\lambda)}) \neq \{0\}$. Точка λ принадлежит остаточному спектру $\sigma_r(T_\theta)$ (непрерывному спектру $\sigma_c(L_\theta)$) тогда и только тогда, когда отношение $(\theta - \Phi_{\delta(\lambda)})^{-1}$ является неплотно определенным (плотно определенным и неограниченным) оператором. Точка λ принадлежит резольвентному множеству $\rho(L_\theta)$ в том и только том случае, когда $(\theta - \Phi_{\delta(\lambda)})^{-1}$ является ограниченным всюду определенным оператором.

В заключение этого раздела рассмотрим такие интегральные уравнения, которые в случае абсолютной непрерывности операторных мер переходят в квазидифференциальные уравнения.

Пусть \mathcal{H} — конечномерное гильбертово пространство. Рассмотрим на отрезке [a,b] систему, состоящую из $r \geqslant 2$ уравнений,

$$u_{j-1}(t) = u_{j-1}(t_0) + \sum_{k=1}^{j+1} \int_{t_0}^t (d\mathbf{p}_{j,k}) u_{k-1}(s), \quad j = 1, ..., r-1,$$

$$u_{r-1}(t) = u_{r-1}(t_0) + \sum_{k=1}^{r} \int_{t_0}^{t} (d\mathbf{p}_{r,k}) u_{k-1}(s) + \lambda i^{-r} \int_{t_0}^{t} (d\mathbf{m}_1) u_0(s) + i^{-r} \int_{t_0}^{t} (d\mathbf{m}_1) f(s),$$
 (17)

где $\mathbf{p}_{j,k}$, \mathbf{m}_1 – операторные меры на [a,b], значения которых – линейные операторы в \mathcal{H} , причем мера \mathbf{m}_1 неотрицательна; $f \in L_2(\mathcal{H}, d\mathbf{m}_1; a, b)$; $\lambda \in \mathbb{C}$; $u = u_0, u_1, ..., u_{r-1}$ – неизвестные функции. Предполагается, что меры $\mathbf{p}_{j,k}$ удовлетворяют условиям: (a) $\mathbf{p}_{j,k} = 0$ при k > j+1; (b) существуют такие операторные функции $t \to p_{j,j+1}(t)$ с нормами $t \to \|p_{j,j+1}(t)\| \in L_1(a,b)$, что $\mathbf{p}_{j,j+1}(\Delta) = \int_{\Delta} p_{j,j+1}(t) dt$ для любого борелевского множества Δ (т.е. меры $\mathbf{p}_{j,j+1}$ абсолютно непрерывны) и операторы $p_{j,j+1}(t)$ имеют обратные для всех $t \in [a,b]$.

Сведем систему (17) к уравнению первого порядка. Обозначим $\mathbf{p} = iJ\mathbf{P}$, где \mathbf{P} – матрица порядка r с элементами $\mathbf{p}_{j,k}, J = i^{r+1}\Lambda, \Lambda$ – матрица, на побочной диагонали которой последовательно (сверху вниз) стоят $-E, E, ..., (-1)^r E$, остальные элементы равны нулю, \mathbf{m} – матрица порядка r, у которой на пересечении первой строки и первого столбца стоит \mathbf{m}_1 , остальные элементы равны нулю. Кроме того, положим $\hat{u} = \operatorname{col}(u_0, ..., u_{r-1}), \check{f} = \operatorname{col}(f, 0, ..., 0)$ (столбец длины r). В столбце \check{f} вместо нулей могут находиться произвольные функции. С использованием введенных обозначений система (17) запишется в виде (3), где $y = \hat{u}, H = \mathcal{H}^r$:

$$\widehat{u}(t) = \widehat{u}(t_0) - iJ \int_{t_0}^t (d\mathbf{p})\widehat{u}(s) - i\lambda J \int_{t_0}^t (d\mathbf{m})\widehat{u}(s) - iJ \int_{t_0}^t (d\mathbf{m})\widecheck{f}(s).$$
(18)

Функции u_k (k=0,...,r-1), являющиеся решением системы (17), назовем квазипроизводными функции $u=u_0$ и обозначим $u_k=u^{[k]}$. Из (17) получим для всех $a_0\leqslant t\leqslant b_0,$ j=1,...,r-1

$$\int_{t_0}^t p_{j,j+1}(s)u_j(s)ds = u_{j-1}(t) - u_{j-1}(t_0) - \sum_{k=1}^j \int_{t_0}^t (d\mathbf{p}_{j,k})u_{k-1}(s).$$

Левая (и, следовательно, правая) часть последнего равенства является абсолютно непрерывной функцией. Поэтому при j=1,...,r-1

$$u_{j}(t) = p_{j,j+1}^{-1}(t)\frac{d}{dt}\left(u_{j-1}(t) - u_{j-1}(t_{0}) - \sum_{k=1}^{j} \int_{t_{0}}^{t} (d\mathbf{p}_{j,k})u_{k-1}(s)\right).$$
(19)

Равенство (19) выполняется на отрезке [a,b]. Из (19) следует, что квазипроизводные u_j однозначно определяются функцией $u=u_0$. Функцию u назовем решением (17), если система функций \hat{u} является решением (18).

Пусть $W_m(t,\lambda)$ – операторное решение (17) при $f=0,\,t_0=a_0$, удовлетворяющее условию $W_m^{[j-1]}(a_0,\lambda)=\delta_{jm}E\;(\delta_{jm}$ – символ Кронекера, $j,m=1,...,r);\,\widehat{W}(t,\lambda)$ – матрица с элементами $W_m^{[j-1]}(t,\lambda)$. Тогда функция $t\to\widehat{W}(t,\lambda)$ является решением уравнения (18) при $\check{f}=0$.

Пространства $\mathfrak{H} = L_2(H, d\mathbf{m}; a, b)$ и $L_2(\mathcal{H}, d\mathbf{m}_1; a, b)$ совпадают. Всякая функция вида $\operatorname{col}(0, y_2, ..., y_{r-1})$ со значениями в $H = \mathcal{H}^r$ отождествлена в \mathfrak{H} с нулем. В конечномерном случае $Q_- = Q$. Максимальное и минимальное отношения, порожденные системой (17), определяются следующим образом.

Максимальное отношение L – это множество пар $\{\tilde{u}, \tilde{f}\} \in \mathfrak{H} \times \mathfrak{H}$, для каждой из которых существует пара $\{u, f\}$, отождествленная в $\mathfrak{H} \times \mathfrak{H}$ с $\{\tilde{u}, \tilde{f}\}$ и удовлетворяющая системе (17) при $\lambda = 0$. Минимальное отношение L_0 – это сужение L на множество функций u таких, что $\widehat{u}(a_0) = \widehat{u}(b_0) = 0$, где u – решение (17).

Граничные значения определяются по формулам (15)

$$Y = \tilde{\delta}_1 \{u, f\} = \hat{u}(a_0), \quad Y' = \tilde{\delta}_2 \{u, f\} = \hat{u}(b_0) - \widehat{W}(b_0, 0) \hat{u}(a_0).$$

Тогда $\Phi_{\delta(\lambda)} = \widehat{W}(b_0, \lambda) - \widehat{W}(b_0, 0).$

Для системы интегральных уравнений (17) справедливо утверждение, аналогичное теореме 3. Отметим, что в конечномерном случае условия (17), (17)

Замечание 3. Пусть все меры $\mathbf{p}_{j,k}$ абсолютно непрерывны, т.е. $\mathbf{p}_{j,k}(\Delta) = \int_{\Delta} p_{j,k}(t) dt$, $\|p_{j,k}(t)\| \in L_1(a,b)$, и $\mathbf{m}_1(\Delta) = \mu(\Delta)E$, где μ – обычная мера Лебега на [a,b], т.е. $\mu([\alpha,\beta)) = \beta - \alpha$, $\alpha,\beta \in \mathbb{R}$, $\alpha < \beta$ (как и выше, полагаем $\mu(\Delta) = 0$ для всякого борелевского множества Δ такого, что $[a,b] \cap \Delta = \emptyset$). Тогда $u^{[j]}$ являются квазипроизводными в смысле [8], [9]. При этом $u^{[r]} = i^{-r}f$, где

$$u^{[r]} = (u^{[r-1]})' - \sum_{k=1}^{r} p_{r,k}(t)u^{[k-1]}.$$

5. Интегральные уравнения с импульсными воздействиями

В этом разделе H – сепарабельное гильбертово пространство и $\mathbf{m}(\Delta) = \mu(\Delta)E$, где μ – обычная мера Лебега на [a,b]. В этом случае отношение L (и, следовательно, L_0) является оператором, $Q_- = Q_+ = H$. Граничные значения определяются равенствами (15), а оператор $\Phi_{\delta(\lambda)}$ – равенством (16). Кроме того, при любом $\tau \in [a_0,b_0]$ оператор $\{y,f\} \to y(\tau)$ непрерывно отображает L на H. Поэтому граничные значения можно определить формулами $Y = y(a_0), Y' = y(b_0)$. Тогда $\Phi_{\delta(\lambda)} = W(b_0,\lambda)$. Таким образом, в теореме 3 и следствии 4 в качестве $\Phi_{\delta(\lambda)}$ может быть взят оператор, определенный равенством (16), или оператор $W(b_0,\lambda)$ (в зависимости от выбора ПГЗ).

Отметим, что в статье [16] другим способом получены утверждения, аналогичные теореме 3 и следствию 4, для дифференциального оператора, порожденного сильно непрерывным семейством эволюционных операторов $\mathcal{U}(t,s)$ в банаховом пространстве. Эти утверждения из [16] могут быть установлены методом (незначительно измененным), используемым в данной работе, с учетом теоремы 2, верной для банаховых пространств (при этом в качестве оператора $\Phi_{\delta(\lambda)} = W(b_0, \lambda)$ берется $e^{\lambda(b-a)}\mathcal{U}(b, a)$).

Переходим к рассмотрению уравнения (1) с многозначным импульсным воздействием, предполагая, что в (1) $\mathbf{m}(\Delta) = \mu(\Delta)E$, $t_0 = a_0$.

Зафиксируем некоторую точку $t_1 \in [a, b]$. Возможное изменение решения в точке t_1 определим следующим образом. Положим

$$y(t) = W(t,0)\tilde{c}_1 - W(t,0)iJ \int_{a_0}^t U^*(s,0)f(s)ds, \ a_0 \leqslant t \leqslant t_1,$$
 (20)

$$y(t) = W(t,0)W_{+}^{-1}(t_1,0)\tilde{c}_2 - W(t,0)iJ\int_{t_1}^{t} U^*(s,0)f(s)ds, \ t_1 < t \le b_0.$$
 (21)

где $f \in \mathfrak{H}$, $\tilde{c}_1, \tilde{c}_2 \in H$, $W_+(t_1,0) = \lim_{t \to t_1+0} W(t,0)$. Функция y, вообще говоря, имеет разрыв в точке t_1 , обусловленный тем, что элемент $\tilde{c}_2 \in H$ выбирается произвольно. Отметим, что $\tilde{c}_1 = y(a_0), \ \tilde{c}_2 = \lim_{t \to t_1+0} y(t)$.

Определим оператор \mathcal{L} следующим образом. Считаем, что область определения $\mathcal{D}(\mathcal{L})$ оператора \mathcal{L} состоит из функций y, имеющих вид (20), (21), и полагаем $\mathcal{L}y = f$. Оператор \mathcal{L} замкнут.

В определении ПГЗ возьмем $B_1 = B_2 = H \times H$ и определим граничные значения равенствами

$$\gamma_1\{y,f\} = Y = \{y(a_0), y^+(t_1)\}, \quad \gamma_2\{y,f\} = Y' = \{y(t_1), y(b_0)\},$$

где $y^+(t_1) = \lim_{t \to t_1 + 0} y(t)$. Из леммы 2 и следствия 3, непрерывной обратимости оператора $W(t,0): H \to H$ следует, что четверка $(H \times H, H \times H, \gamma_1, \gamma_2)$ является ПГЗ для оператора \mathcal{L} . Положим $\gamma\{y,f\} = \{Y,Y'\}$.

Оператор Φ_{γ} задается равенством

$$\Phi_{\gamma}(\{\tilde{c}_1, \tilde{c}_2\}) = \{W(t_1, 0)\tilde{c}_1, W(b_0, 0)W_{+}^{-1}(t_1, 0)\tilde{c}_2\}, \quad \{\tilde{c}_1, \tilde{c}_2\} \in H \times H. \tag{22}$$

Здесь учтено, что функция $t \to W(t,0)$ непрерывна слева. В данном случае минимальный оператор \mathcal{L}_0 определяется как сужение оператора \mathcal{L} на множество функций $y \in \mathcal{D}(\mathcal{L})$, для которых $y(a_0) = y(b_0) = y(t_1) = y^+(t_1) = 0$.

Пусть θ — линейное отношение, $\theta \subset (H \times H) \times (H \times H)$, \mathcal{L}_{θ} — такой оператор, что $\mathcal{L}_{0} \subset \mathcal{L}_{\theta} \subset \mathcal{L}$ и $\gamma \mathcal{L}_{\theta} = \theta$. Для оператора \mathcal{L}_{θ} справедливы утверждения, аналогичные теореме 3 и следствию 4.

Рассмотрим важный частный случай, когда отношение θ определяется двумя отношениями θ_{12} и θ_{21} , состоящими соответственно из пар граничных значений в точке разрыва t_1 и пар граничных значений на концах a_0 , b_0 . Обозначим через H_1 , H_2 первый и второй экземпляры пространства H в декартовом произведении $H \times H$ и предположим, что отношение $\theta \subset (H_1 \times H_2) \times (H_1 \times H_2)$ состоит из пар вида

$$\{\operatorname{col}(x_1, x_2), \operatorname{col}(x_{12}, x_{21})\},$$
 (23)

где $\{x_2, x_{12}\} \in \theta_{12} \subset H_2 \times H_1, \{x_1, x_{21}\} \in \theta_{21} \subset H_1 \times H_2$ (здесь и далее пару $\{z_1, z_2\} \in H_1 \times H_2$ удобно обозначать как столбец $\operatorname{col}(z_1, z_2)$, чтобы проследить аналогию с операторами, задаваемыми матрицами). Таким образом, область определения оператора \mathcal{L}_{θ} состоит из функций y вида (20), (21), удовлетворяющих граничным условиям

$${y(a_0), y(b_0)} \in \theta_{21}, {y^+(t_1), y(t_1)} \in \theta_{12}.$$

Отметим, что отношение θ замкнуто тогда и только тогда, когда замкнуты отношения θ_{12} и θ_{21} . Далее предполагаем замкнутость отношения θ .

Для сокращения записи обозначим $\omega_1=W(t_1,0),\ \omega_2=W(b_0,0)W_+^{-1}(t_1,0).$ Пусть $\omega:H_1\times H_2\to H_1\times H_2$ — оператор, определяемый равенством $\omega\{x_1,x_2\}=\{\omega_1x_1,\omega_2x_2\},$ где $x_1\in H_1=H,\ x_2\in H_2=H.$ Из (22), (23) следует, что отношение $\theta-\Phi_\gamma$ состоит из пар вида

$$\{\operatorname{col}(x_1, x_2), \operatorname{col}(-\omega_1 x_1 + x_{12}, x_{21} - \omega_2 x_2)\}, \tag{24}$$

где пары $\{x_2, x_{12}\} \in \theta_{12}, \{x_1, x_{21}\} \in \theta_{21}.$

Оператор ω непрерывно и взаимно однозначно отображает $H_1 \times H_2$ на $H_1 \times H_2$. Поэтому отношения $\theta - \Phi_{\gamma}$ и $\zeta = \omega^{-1}(\theta - \Phi_{\gamma})$ одновременно находятся или нет в состоянии k $(1 \leqslant k \leqslant 8)$. Обозначим $\zeta_{12} = \omega_1^{-1}\theta_{12}, \ \zeta_{21} = \omega_2^{-1}\theta_{21}$. Из (24) вытекает, что отношение ζ состоит из пар вида

$${\operatorname{col}(g_1, g_2), \operatorname{col}(-g_1 + g_{12}, g_{21} - g_2)},$$
 (25)

где пары $\{g_2, g_{12}\} \in \zeta_{12}, \{g_1, g_{21}\} \in \zeta_{21}.$

Лемма 4. Справедливы следующие утверждения: a) $\dim \ker \zeta < \infty$ тогда и только тогда, когда $\dim \ker (\zeta_{12}\zeta_{21} - E) < \infty$ и $\dim \ker (\zeta_{21}\zeta_{12} - E) < \infty$; б) $\dim \ker \zeta = 0$ в том и только том случае, когда $\dim \ker (\zeta_{12}\zeta_{21} - E) = 0$ и $\dim \ker (\zeta_{21}\zeta_{12} - E) = 0$.

Доказательство. Пусть $\operatorname{col}(g_1,g_2) \in \ker \zeta$. Из (25) следует существование таких элементов $g_{12},g_{21} \in H$, что пары $\{g_2,g_{12}\} \in \zeta_{12}, \{g_1,g_{21}\} \in \zeta_{21}$ и $g_1=g_{12}, g_2=g_{21}$. Отсюда получаем, что $\{g_1,g_{12}\} \in \zeta_{12}\zeta_{21}$ и $g_1 \in \ker(\zeta_{12}\zeta_{21}-E)$. Аналогично получим $\{g_2,g_{21}\} \in \zeta_{21}\zeta_{12}$ и $g_2 \in \ker(\zeta_{21}\zeta_{12}-E)$.

С другой стороны, если $g_1 \in \ker(\zeta_{12}\zeta_{21} - E)$, то существуют такие элементы g_{21} и g_{12} , что пары $\{g_1, g_{21}\} \in \zeta_{21}$, $\{g_{21}, g_{12}\} \in \zeta_{12}$ и $g_{12} = g_1$. Отсюда и из (25) следует $\operatorname{col}(g_1, g_{21}) \in \ker \zeta$. Аналогично получаем, что если $g_2 \in \ker(\zeta_{21}\zeta_{12} - E)$, то существует элемент g_{12} со свойством $\operatorname{col}(g_{12}, g_2) \in \ker \zeta$. Из приведенных соотношений следуют все утверждения леммы. Лемма доказана.

Обозначим
$$Z_1 = \mathcal{R}(\zeta_{12}\zeta_{21} - E), Z_2 = \mathcal{R}(\zeta_{21}\zeta_{12} - E).$$

Лемма 5. Отношение ζ сюръективно тогда и только тогда, когда сюръективны отношения $\zeta_{12}\zeta_{21} - E$ и $\zeta_{21}\zeta_{12} - E$.

Доказательство. Пусть отношение ζ сюръективно. Из (25) следует, что для любых $z_1, z_2 \in H$ найдутся такие пары $\{g_2, g_{12}\} \in \zeta_{12}, \{g_1, g_{21}\} \in \zeta_{21},$ что $-g_1+g_{12}=z_1, g_{21}-g_2=z_2$. Положим $z_2=0$. Тогда $g_2=g_{21}$. Поэтому $\{g_1, g_{12}\} \in \zeta_{12}\zeta_{21}$ и $z_1 \in Z_1=\mathcal{R}(\zeta_{12}\zeta_{21}-E)$. Отсюда в силу произвольности z_1 получаем $Z_1=H$. Аналогично доказывается, что $Z_2=\mathcal{R}(\zeta_{21}\zeta_{12}-E)=H$. Таким образом, отношения $\zeta_{12}\zeta_{21}-E, \zeta_{21}\zeta_{12}-E$ сюръективны.

Докажем обратное утверждение. Элемент $z_2 \in Z_2$ тогда и только тогда, когда найдется элемент g_2 такой, что пара $\{g_2, z_2\} \in \zeta_{21}\zeta_{12} - E$. Это равносильно существованию элементов g_{12}, g_{21} со свойствами

$$\{g_2, g_{12}\} \in \zeta_{12}, \quad \{g_{12}, g_{21}\} \in \zeta_{21}, \quad g_{21} - g_2 = z_2.$$
 (26)

Аналогично, элемент $z_1 \in Z_1$ в том и только том случае, когда существуют элементы g_1 , g'_{12}, g'_{21} со свойствами

$$\{g_1, z_1\} \in \zeta_{12}\zeta_{21} - E, \quad \{g_1, g'_{21}\} \in \zeta_{21}, \quad \{g'_{21}, g'_{12}\} \in \zeta_{12}, \quad g'_{12} - g_1 = z_1.$$
 (27)

Из (26), (27) получаем, что $\{g_2+g_{21}',g_{12}+g_{12}'\}\in\zeta_{12}, \{g_{12}+g_1,g_{21}+g_{21}'\}\in\zeta_{21}$. Отсюда и из (25) следует $\{\operatorname{col}(g_{12}+g_1,g_2+g_{21}'),\operatorname{col}(g_{12}'-g_1,g_{21}-g_2)\}\in\zeta$. Равенства (26), (27) влекут $\{\operatorname{col}(g_{12}+g_1,g_2+g_{21}'),\operatorname{col}(z_1,z_2)\}\in\zeta$. Поэтому $\operatorname{col}(z_1,z_2)\in\mathcal{R}(\zeta)$.

Таким образом, если отношения $\zeta_{12}\zeta_{21} - E$ и $\zeta_{21}\zeta_{12} - E$ сюръективны, то сюръективно отношение ζ . Лемма доказана.

Замечание 2. При доказательстве второй части леммы 5 фактически установлено следующее утверждение: если $z_1 \in Z_1, z_2 \in Z_2$, то $\operatorname{col}(z_1, z_2) \in \mathcal{R}(\zeta)$.

Теорема 4. Оператор \mathcal{L}_{θ} непрерывно обратим тогда и только тогда, когда непрерывно обратимы отношения

$$W^{-1}(t_1,0)\theta_{12}W_+(t_1,0)W^{-1}(b_0,0)\theta_{21}-E,$$

$$W_{+}(t_{1},0)W^{-1}(b_{0},0)\theta_{21}W^{-1}(t_{1},0)\theta_{12} - E.$$
 (28)

Доказательство. Отношения (28) соответственно равны $\zeta_{12}\zeta_{21} - E$ и $\zeta_{21}\zeta_{12} - E$. Выше установлено, что \mathcal{L}_{θ} , $\theta - \Phi_{\gamma}$, ζ одновременно находятся в состоянии k ($1 \le k \le 8$). Теперь требуемое утверждение следует из лемм 4, 5.

Лемма 6. Если область значений $\mathcal{R}(\zeta)$ замкнута и имеет конечную коразмерность, то области значений $Z_1 = \mathcal{R}(\zeta_{12}\zeta_{21} - E)$ и $Z_2 = \mathcal{R}(\zeta_{21}\zeta_{12} - E)$ имеют конечную коразмерность. Если Z_1 , Z_2 имеют конечную коразмерность, то тем же свойством обладает $\mathcal{R}(\zeta)$.

Доказательство. Пусть $\mathcal{R}(\zeta)$ замкнута и имеет конечномерную коразмерность. Тогда $\mathcal{R}(\zeta) \cap (H \times \{0\})$ имеет конечную коразмерность. Пусть $\operatorname{col}(z_1, 0) \in \mathcal{R}(\zeta) \cap (H \times \{0\})$. Так

же как в доказательстве первой части леммы 5 получим $z_1 \in Z_1$. Отсюда следует, что Z_1 имеет конечную коразмерность. Требуемое утверждение относительно Z_2 доказывается аналогично.

Пусть теперь Z_1 и Z_2 имеют конечную коразмерность $z_1 \in Z_1, z_2 \in Z_2$. Из замечания 2 получим $\operatorname{col}(z_1, z_2) \in \mathcal{R}(\zeta)$. Поэтому $\mathcal{R}(\zeta)$ имеет конечномерную коразмерность. Лемма доказана.

Теорема 5. Оператор \mathcal{L}_{θ} фредгольмов тогда и только тогда, когда отношения (28) фредгольмовы.

Доказательство. Оператор \mathcal{L}_{θ} и отношения $\theta - \Phi_{\gamma}$, ζ одновременно являются или нет фредгольмовыми. Пусть отношение ζ фредгольмово. Тогда область значений $\mathcal{R}(\zeta)$ замкнута. Докажем замкнутость $Z_1 = \mathcal{R}(\zeta_{12}\zeta_{21} - E)$. Пусть $z_{1,n} \in Z_1$ и последовательность $\{z_{1,n}\}$ сходится к z. Из замечания 2 следует, что $\operatorname{col}(z_{1,n},0)\} \in \mathcal{R}(\zeta)$. Замкнутость $\mathcal{R}(\zeta)$ влечет $\operatorname{col}(z,0) \in \mathcal{R}(\zeta)$. Из доказательства первой части леммы 5 получим, что $z \in Z_1$. Замкнутость $Z_2 = \mathcal{R}(\zeta_{12}\zeta_{21} - E)$ устанавливается аналогично. Теперь фредгольмовость отношений (28) следует из лемм 4, 6.

Обратно, пусть отношения (28) фредгольмовы. Эти отношения соответственно равны $\zeta_{12}\zeta_{21}-E$ и $\zeta_{21}\zeta_{12}-E$. Следовательно, Z_1 , Z_2 замкнуты. Поэтому замкнуто множество $Z_1\times Z_2$. Оно имеет конечную коразмерность в $H\times H$, так как по условию конечную коразмерность имеют Z_1 , Z_2 . Следовательно, существует такое линейное многообразие $M\subset H\times H$, что $\dim M<\infty$, $(Z_1\times Z_2)\cap M=\{0,0\}$ и $H\times H=(Z_1\times Z_2)\dotplus M$. Из замечания 2 получаем $Z_1\times Z_2\subset \mathcal{R}(\zeta)$. Поэтому $\mathcal{R}(\zeta)=(Z_1\times Z_2)\dotplus (M\cap \mathcal{R}(\zeta))$. Из [17, гл. 1, утв. 3.3, (с. 35, рус.)] вытекает замкнутость $\mathcal{R}(\zeta)$. Теперь применение лемм 4, 6 завершает доказательство теоремы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Покорный Ю. В., Зверева М. Б., Шабров С. А. Осцилляционная теория Штурма-Лиувилля для импульсных задач // Успехи матем. наук. Т. 63, № 1. 2008. С. 111–154. English transl.: Pokornyi Yu. V., Zvereva M. B., Shabrov S. A. Sturm-Liouville oscillation theory for impulsive problems // Russian Mathematics Surveys. V. 63, № 1. 2008. P. 109–153.
- 2. Савчук А. М., Шкаликов А. А. *Onepamopы Штурма-Лиувилля с сингулярными потенциала-ми //* Мат. заметки. Т. 66, № 6. 1999, С. 897–912. English transl.: Savchuk A. M., Shkalikov A. A. *Sturm-liouville operators with singular potentials //* Math. Notes. V. 66, № 6. 1999. P. 741–753.
- 3. Брук В. М. Об обратимых линейных отношениях, порожденных интегральным уравнением с неванлинновской мерой // Изв. ВУЗов. Математика. № 2. 2013. С. 16–29. English transl.: Bruk V. M. Invertible linear relations generated by an integral equation with Nevanlinna measure // Russian Mathematics. V. 57, № 2. P. 13–24.
- 4. Баскаков А. Г. Спектральный анализ дифференциальных операторов с неограниченными операторными коэффициентами, разностные отношения и полугруппы разностных отношений // Изв. РАН. Сер. мат. Т. 73, № 2. 2009. С. 3–68. English transl.: Baskakov A. G. Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations // Izvestiya: Mathematics. V. 73, № 2. 2009. P. 215–278.
- 5. Баскаков А. Г. Исследование линейных дифференциальных уравнений методами спектральной теории разностных операторов и линейных отношений // Успехи матем. наук. Т. 68, № 1. 2013. С. 77–128. English transl.: Baskakov A. G. Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations // Russian Mathematical Surveys. V. 68, № 1. 2013. P. 69–116.
- 6. Брук В. М. *Об обратимых сужениях замкнутых операторов в банаховых пространствах* // Функц. анализ. Ульяновск. № 28. 1988. С. 17–22.
- 7. V. M. Bruk On linear relations generated by Nonnegative operator function and degenerate elliptic differential-operator expression // J. of Math. Physics, Analysis, Geometry. V. 5, № 2. 2009. P. 123–144.

62 B.M. *BPYK*

- 8. Шин Д. О квазидифференциальных операторах в гильбертовом пространстве // Матем. сборник. Т. 13, № 1. 1943. С. 39–70.
- 9. A. Zettl Formally self-adjoint quasi-differential operators // Rocky Mountain J. Math. V. 5, № 3. 1975. P. 453–474.
- 10. Самойленко А. М., Перестюк Н. А. Дифференциальные уравнения с импульсным воздействием. Вища Школа. Киев. 1987. 288 с.
- 11. Диденко В.Б. О непрерывной обратимости и фредгольмовости дифференциальных операторов с многозначными импульсными воздействиями // Изв. РАН. Сер. мат. Т. 77, № 1. 2013. С. 5–22. English transl.: Didenko V. B. On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects // Izvestiya: Mathematics. V. 77, № 1. 2013. Р. 3–19.
- 12. Рофе-Бекетов Ф. С. Самосопряженные расширения дифференциальных операторов в пространстве вектор-функций // Докл. Акад. Наук СССР. Т. 184, № 5. 1969. С. 1034–1037. English transl.: Rofe-Beketov F. S. Selfadjoint extensions of differential operators in a space of vector functions // Soviet. Math. Dokl. V. 10, № 1. 1969. P. 188–192.
- 13. Березанский Ю. М. Разложение по собственным функциям самосопряженных операторов. Наукова Думка, Киев, 1965. 798 с. English transl.: Berezanski Yu. M. Expansions in Eigenfunctions of Selfadjoint Operators. Amer. Math. Soc., Providence, RI, 1968. 822 р.
- 14. V. M. Bruk On the characteristic operator of an integral equation with a nevanlinna measure in the infinite-dimensional case // J. of Math. Physics, Analysis, Geometry. V. 10, № 2. 2014. P. 163–188.
- 15. Брук В. М. Об обратимых сужениях отношений, порожденных дифференциальным выражением и неотрицательной операторной функцией // Матем. заметки. Т. 82, № 5. 2007. С. 652—664. English transl.: Bruk V. M. On invertible restrictions of relations generated by a differential expression and by a Nonnegative operator function // Math. Notes. V. 82, № 5. P. 583–595.
- 16. Диденко В.Б. О спектральных свойствах дифференциальных операторов с неограниченными операторными коэффициентами, определяемых линейным отношением // Матем. заметки. Т. 89, № 2. 2011. С. 226–240. English transl.: Didenko V. B. On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation // Math. Notes. V. 89, № 2. P. 224–237.
- 17. H. Schaefer *Topological Vector Spaces*. The Macmillan Company. New York; Collier–Macmillan Limited. London, 1966. 306 р. (English); Рус. перевод: Х. Шефер, Топологические векторные пространства, Мир, М. 1971. 360 с.

Владислав Моисеевич Брук,

Саратовский государственный технический университет,

ул. Политехническая, 77,

410054, г. Саратов, Россия

E-mail: vladislavbruk@mail.ru