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LEVY’S PHENOMENON FOR ENTIRE FUNCTIONS OF
SEVERAL VARIABLES

A.O0. KURYLIAK, O.B. SKASKIV, 0.V. ZRUM

Abstract. For entire functions f(z) = .72 a,z", 2 € C, P. Lévy (1929) established
that in the classical Wiman’s inequality M (r) < pp(r)(In s (r))Y/2*¢, & > 0, which holds
outside a set of finite logarithmic measure, the constant 1/2 can be replaced almost surely in
some sense by 1/4; here M¢(r) = max{|f(2)|: [2| =7}, pr(r) = max{|a,|r": n > 0}, r > 0.
In this paper we prove that the phenomenon discovered by P. Lévy holds also in the case
of Wiman’s inequality for entire functions of several variables, which gives an affirmative
answer to the question of A. A. Goldberg and M. M. Sheremeta (1996) on the possibility
of this phenomenon.

Keywords: Levy’s phenomenon, random entire functions of several variables, Wiman’s
inequality
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1. INTRODUCTION

For an entire function of the form
+o0
f(z) = Z a,z"
n=0

we denote M (r) = max{|f(2)|: |z| = r}, pr(r) = max{|a,|r": n > 0}, r > 0. It is well known
([, [2]) that for each nonconstant entire function f and all € > 0 the following inequality

My(r) < jug(r)(Injug(r)) /22 (1)

holds for r > 1 outside an exceptional set Ef() of finite logarithmic measure ( [ ) &< 400).

In this paper we consider entire functions of p complex variables

f(z)=f(z1,..., %) = Z anz", (2)

[[nll=0
where 2" = 21" ... 5", pe N, n=(ny,...,n,) € Z8, |n|| = 30_ nj. Forr = (r1,...,7,) € R
we denote
B(R)={teRi:t; >R;, je{l,....p}}, R=(Ry,...,Ry), Inpx =Inlnz,
rN = min r;, M;(r)=max{|f(2)|: |a1| =r1,...,|2] =1}

1<i<p
+oo
pp(r) = max{|a,|ri*...rp7:n € ZE Y, My(r) = Z la,|r".
lInll=0
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By AP we denote the class of entire functions of form 1' such that % f(z) # 0 in CP for

any j € {1,...,p}. We say that a subset E of R" is a set of asymptotically finite logarithmic
measure [9] if £ is Lebesgue measurable in R% and there exists an R € R% such that £ N B(R)
is a set of finite logarithmic measure, i.e.

/H—<—|—oo
=1

For entire functions of the form analogues of inequality are proved in [3] [5, 6], 9].
Also analogues of inequality without exceptional sets for entire functions of several complex
variables can be found in [10].

In particular, the following statement is proved in [9].

Theorem 1. Let f € AP and § > 0.

a) Then there exist R € RY. and a subset E of B(R) of finite logarithmic measure such that
for all r € B(R)\E we have

p . 1/2+6
0ty (r) < g ) (T 10" i 07 g ()
=1

(3)

b) If for some a € R we have M(r) > exp(r®) = exp(ri*...rp"), as r* — 400 or more
generally, for each > 0

H dr;

/ / 3 < 400, as S — +o0, (4)
r1re ... 1y In” My (r)
B(S)

then there exist R € RY, and a subset E of B(R) of finite logarithmic measure such that
for all r € B(R)\E we have

My (1) < pup(r) P20 g (r).

2. WIMAN’S TYPE INEQUALITY FOR RANDOM ENTIRE FUNCTIONS OF SEVERAL
VARIABLES

Let Q = [0,1] and P be the Lebesgue measure on R. We consider the Steinhaus probability
space (€2, A, P) where A is the o-algebra of Lebesgue measurable subsets of Q. Let X = (X,,(1))
be some sequence of random variables defined in this space. For an entire function of the form
f(2) =3 a,2" by K(f, X) we denote the class of random entire functions of the form

= a, X, (t)z". (5)

In the sequel, the notion “almost surely” will be used in the sense that the corresponding
property holds almost everywhere with respect to Lebesgue measure P on 2 = [0,1]. We say
that some relation holds almost surely in the class K (f, X) if it holds for each entire function
f(z,t) of the form (b)) almost surely in ¢.

In the case when R = (X,(f)) is the Rademacher sequence, ie. (X,(t)) is a
sequence of independent uniformly distributed random variables on [0,1] such that
P{t: X, (t) = +1} = 1/2, P. Levy [7] proved that for any entire function we can replace the
constant 1/2 by 1/4 in the inequality (1) almost surely in the class K(f, R). Later P. Erdés and
A. Rényi [8] proved the same result for the class K (f, H), where H = (™) is the Steinhaus
sequence, i.e. (w,(t)) is a sequence of independent uniformly distributed random variables on
[0,1]. This statement is true also for any class K(f, X), where X = (X,,(¢)) is multiplicative
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system (MS) uniformly bounded by the number 1. That is for all n € N and ¢ € [0, 1] we have
| X,(t)] <1 and

(Vl Zl < ZQ < - K Zk) ].\Z[()(“,le2 R sz) = 07
where M( is the expected value of a random variable £ ([I5]-[16]).

In the spring of 1996 during the report of P. V. Filevych at the Lviv seminar of the theory of
analytic functions professors A. A. Goldberg and M. M. Sheremeta posed the following question
(see [12]). Does Levy’s effect take place for analogues of Wiman’s inequality for entire functions
of several complex variables?

In the papers [12]-[14] we have found an affirmative answer to this question for Fenton’s
inequality [4] for entire functions of two complex variables.

In this paper we will give answer to this question for Wiman’s type inequality from [9] for
entire functions of several complex variables.

The exceptional set in our statements is “smaller” than the exceptional set in the
corresponding theorems from [4], [12]-[14]. The method of proof in this paper differs from
the method of the papers [4], [12]-[14].

Let Z = (Z,(t)) be a complex sequence of random variables Z,(t) = X, (t) + iY,(t) such
that both X = (X, (t)) and Y = (Y,,(¢)) are real MS and K(f, Z) the class of random entire

functions of the form .
)= anZa(t)zyt ... 2.
lInl=0
Theorem 2. Let Z = (Z,(t)) be a MS uniformly bounded by the number 1, § > 0, f € A?.
a) Then almost surely in K(f,Z) there exist R € RY and a subset E* of B(R) of finite
logarithmic measure such that for all r € B(R)\E* we have

> 1/4+46

My(r,t) = max | (2, 0] < jug(r) (10" s (r) Hln "y (6)

b) If for some a € RY. we have

M(r) > exp(r®) = exp(ri* ... ry7) as r™ — o0

or more generally, for each § > 0 inequality (@ holds, then almost surely in K(f, Z) there
exist R € RY and a subset E of B(R) of finite logarithmic measure such that for all
r € B(R)\E we get

My (r,t) < pg(r) In? %0 g (r). (7)

Lemma 1 ([I0]). Let X = (X, (t)) be a MS uniformly bounded by the number 1. Then for
each B > 0 there exists a constant Ag, > 0, which depends on p and [ only such that for all
N > Ni(p) = max{p, 47} and {cn' |n|]| < N} C C we have

{t max{ Z CnXn( m”pl.. emevr| .

In|=0
here S% = > 2
where oy = ||n||:0|c7’b| :

1
> Ag,Sy In? N} 5 (8)
By H we denote the class of function h: RY — R, such that
+o0 +oo

/.../%<+oo.

1 1

) € [0,27]P }2
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We also define for all i € {1,...,p}
“+o00

O, InMy(r) = ri%(lnﬁﬁf(r)) = ?J)TL() Z nilan|r".

lInl=0
Lemma 2 ([9]). Let h € H. Then there exist R € R and a subset E' of B(R) of finite
logarithmic measure such that for all r € B(R)\E' and s € {1,...,p} we have
OsInMy(r) < h(lnry,...,Inre_y, InMs(r), Inrgq, ..., Inry). (9)

Proof of Theorem 2. Without loss of generality we may suppose that Z = X = (X,(t)) is a
MS. Indeed, if Z,(t) = X,,(t) + iY,(t) then we obtain

“+o0o +00
Fat) =" aXo()2"+ ) iaYa ()" = fiz 1) + fo(z. 1),

lInll=0 [[n]|=0
where fi, fo € K(f, X), and
max{pu(r, fi(+, 1)), u(r, fa(-, 1))} < pl(r, f) = max{la,|r* ... rp7:n € Z8 }

for all r € R% and ¢ € [0,1]. Then from inequality (6) we obtain that there exists a set Ey
of asymptotically finite logarithmic measure such that for all » € B(R)\FEy almost surely in
K(f,Z)

) 1/4+60

p
My, (i) < g ) ([T v () G € {12}, 60 > 00
=1

So, for large enough R" and for all r € B(R)\Ey almost surely in K(f,Z) we get
Mf(ra t) < My, (Ta t) + Mfz(r7 t) <

P 1/446 P 1/4425
< 2p4(7) (H In”~'r; - In? /Lf(?”)) "< g (r) <H In” ' r; - In? uf(r)) ’
i=1 =1

For any j € {1,...,p} we have

rngoouf(r?""77'?71”377’%17“"7“2) = +00 (10)
for fixed ) > 0, i € {1,...,p}\{j}. Indeed, if does not hold, then there exists a constant
C' > 0 such that for all r; > 7% we have pg(r?,...,r) 1, r,79,,,...,m)) < C < +00. Hence,

#{n; >1:a, #0} =0 and %f(z) =0 in CP. So, f ¢ AP, which gives a contradiction.

For k € NU {0} we denote Gy, = {r = (r1,...,rp) € RE: k <lnps(r) < k+1}N[L;4o00)P.
Then Gy # @ for k > kg and from ((10) we deduce that for all k£ the set Gy is a bounded set.
Let Gy = U5, G; and

p
hir) =] rim"* v € H, 6 > 0.
i=1
By Lemma 2 there exist R; € R% and a subset E; of B(R;) of finite logarithmic measure
such that for all r € B(R;)\E; and j € {1,...,p} we have

+oo
Z nilan|r™ < Me(r)h(Inr, ... Inre_y, InMs(r),Inrgq, ..., Inr,) <
l[nl|=0
P
< M () In M4 () Ing ™ M () H Inr; Ind ™o r;.
i=1, i)

We can choose R € RE so that B(R) C ( P B(Rj)>ﬂ[eez, +00)P.

=1



126 A.O. KURYLIAK, O.B. SKASKIV, O.V. ZRUM

Then for for large enough R" and for all r € B(R)\(U,_, E;) we obtain

400 p p
nlla,|r™ < M (r) In 9, (r) Ikt 9. (r Inr; lnH(Sl T | <
> linlllax] £(r) Mty (r) Iny !

[In||=0 §=1 \i=1, i#j

< p-My(r)n' o290 (r l_IlnmlnH(Sl T,

By Theorem 1 we get for large enough R" and for all r € B(R)\(U"_, E;)

1/2461
S lollan™ < s (Hlnp el () X

Infl=0 i=1

><<1npf(7“) +< +51>< -1) Zln27‘z+pln2uf )>1+61/2H1n7“z Ini*o r,<

(p—1)(1/2+61)+1 2+381/2
< ) s ([ 1y 1 (H nyrg)
=1

because a1z1 + - -+ + agxy < 1 - ... xy for large enough 2 > 1, x = (x1, ..., xzx). Therefore as
9y = (p+ 1)d; for large enough R" and for all r € B(R)\(U}_, E:) we obtain

(lnp r; In2 T~> e
g o Tg .

E*@

“+oo
S Inllanlr™ < up(r) W24 4 )

Inll=0 =1
So,
n lnll, a1 n
> anlm < Y T lanlr" = > lnlllanlr™ <
Inl>d Inl>d Inl>d
1 P 144
< Zl,uf(r) lnp/2+1+52,u T)H(lnprilngm) - pr(r), (11)
i=1
where

p 1+02
d = d(r) = InP/2F1H02 () H(lnp r; In3 7“,-) :
i=1

Let G = Gy \ Ept1, Ep1 = U (E;UE*) U (Ufi;l Gi>. By I we denote the set of integers

k > ko such that G} # @. Then #I = +oc. For k € I we choose a sequence r'*) € G%. Then
for all r € G, we get

k+1

,uf(r(k)) < e Lepp(r), pp(r) < et < e,uf(r(k)), (12)

and also

—+00
UGZ: Usz\Ep—H = UGk\Ep+1 = [1;—}-oo)p\E+1
k=1

kel kel

For k € I we denote N, = [2d;(r®))], where

2+146 - o\t
di(r) = InP/2+1+ 2( H(lnp r; In2 Ti) 7

=1
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and for r € G},

WNk (7”7 t) — max Z anr?l . r;peinl’t/)1+...+inpprn(t) . w e [07 27T]p
Il <N

For a Lebesgue measurable set G C G, and for k& € I we denote
~ meas,(G)
~ meas,(G%)’
where meas, denotes the Lebesgue measure on R?. Note that v, is a probability measure defined
on the family of Lebesgue measurable subsets of G7.

Let Q = {J,e; Gy and I = {k;: j > 0}, where k; < kj 1, j > 0. Without loss of generality we

may assume that kg = 0. Then E,;1 = J,_,(E; U E*). For Lebesgue measurable subsets G of
2 we denote

Vk(

X1 1\ ki+1—k;
&)=Y 5 (1-(5) ) ma@nGi). (13)
=0
We note that vy, (G}, ) = 1, therefore
+o0 +oo  kjt1 -+00
1 1\ ki+1—F; 1 1
Q):Z@(l—@) ) b (Gh) =D D 50 = 22—:
7=0 7=0 s=k;+1 s=1

Thus v is a probability measure, which is defined on measurable subsets of 2. On [0, 1] x Q
we define the probability measure Fy = P ® v, which is a direct product of the probability
measures P and v. Now for k € I we define

Fr={(t,7) €[0,1] x Q: Wy, (,t) > A1 Sy, () In"? N},
Fi(r) = {t € [0,1]: Wy, (r,t) > A1 Sy, () In'/? N, },

where S3, (r) = ZIJI\ZCIIZO lan[*r*" and A, is the constant from Lemma 1 with 8 = 1. Using
Fubini’s theorem and Lemma 1 with ¢, = a,r™ and § =1, we get for k € [

R(R) = [ ( / dP)duz [ P < o) =

Note that Ny > Wn?/**' iy (r®) > k32, Therefore 3, , Po(F) < S, 55 k32 < +oo.
By Borel-Cantelli’s lemma the infinite quantity of the events {Fy: k € I} may occur with
probability zero. So,

+o0
P(F)=1, F={]J () Fecl0,1]x.
s=1k>s,kel
Then for any point (¢,r) € F there exists kg = ko(t,r) such that for all & > ko, k € I we
have
WNk(T, f}) < Alst(’f’) 1H1/2 Nk (14)
Let P; be a probability measure defined on (£2;,.4,), where A; is a o-algebra of subsets
Q; (j € {1,...,p}) and Py is the direct product of probability measures Pi,..., P, defined
on (2 x ... xQ, A x ... x A,). Here 4 x ... x A, is the o-algebra, which contains all

Ay x ... x Ay, where A; € A;. If F C Ay x ... x A, such that Py(F) = 1, then in the case
when projection

Fl = {tl € Qli (El(tg,...,tp) € QQ X ... X Qp)[(tl,...,tp) € F]}
of the set F on )y is Pj-measurable we have P;(F;) = 1.
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By Fo we denote the projection of F on , i.e. FQ = {r € Q: (3)|[(t,r) € F]}. Then
v(Fq) = 1. Similarly, the projection of F on [0, 1} = U,eq F(r), we obtain P(Fjyy) = 1.
Let FA(t) = {r € Q: (t,r) € F}. By Fubini’s theorem we have

1

0 !<1_XF>dp0: / ( /< )d,,)dp_

0

So P-almost everywhere 0 = [,(1 — xpr)dv = 1 —v(F"(t)), i.e. 3F, C Foq), P(F)) = 1 such
that for all t € Fy we get v(F(t)) = 1.
Indeed, if for some k € I, k = kj41 we obtain v (F"(t) N G}) = ¢ < 1, then

+0o0

“Sarana <SS (- (5

kel s=0
1 1 1 1\ kj+1—k; _1 1 1 1 1\ kj+1—k; 1
T S

For any t € Fy and k € I we choose a point r{” (t) € G}, such that

W (), 2) > SML(0), Melt) ™ sup{Wi (1) - 7 € G},

Then from v (F(t)NG%) = 1 for all k € I it follows that there exists a point r*)(t) € GENF"(t)
such that

W (901, 8) = W (9 0), )] < M)
SM(1) < Wi (r80(0),1) < Wi (1), 1) + 3 M),

Since (t,7*)(t)) € F, from inequality we obtain
1
§Mk(t) < W, (r® (1), 1) < ASy, (r® (1)) In'/2 N, (15)

Now for r®) = r®)(t) we get

1/246
512\7(7"(16)) S H ( )mf( (H In”~tr k) . In? Mf(f,,(k))) _

So, for t € Fy and all k > ko(t), k € I we obtain

P 1/4+6/2
S (r®) < pp(r®) ([T r® g (r®)) (16)

=1
It follows from that dy(r®)) > d(r) for r € G%. Then for t € Fy, r € F(t) N Gs,
kel, k> ky(t) we get

My(r,t) < ) aalr™ + Wa () <> an|r™ + M(t).

[[n]|>2d1 (r(*)) lInll>2d(r)
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Finally, from , , fort € Fy,re FMt)N Gy, k € I and k > ko(t) we deduce
My(r® 1) < pp(r®) + 24,8y, (1) In'/2 Ny, <

1/446/2
< 1y (r®) + 24,1 (rt (Hlnp” W g (r))

p

X ((p/2+ 1+ 62) I (eptg () + (14 62) Y- (I ) + 21 ) )

i=1
Using inequality we get for t € Fy, r € FAt)NG;, k€I and k > ko(t)

1/2

> 1/44+352/4

My(r,t) < Cpuy(r (Hlnp i gy (1) (17)

We choose k1 > ko(t) such that for all r € G} we have

p d2/4
C < <H In?~!r; - In? ,uf(r)) . (18)
i=1
Using and we get that inequality (6]) holds almost surely (¢ € Fy, P(Fy) = 1) for all
re (U(G;; N FA(1) N G;;)\E* -

kel
= ([1,400)’ NGL) \ (E*UG* U Eppy) = [1,+00)P \ By,
where
Eppr =B, UGTUE", G* = J(Gi \ F/(1)).
kel

It remains to remark that v(G*) defined in satisfies v(G*) = >, o, (e(Gy) — vi(F"(t))) = 0.
Then for all & € I we obtain
meas, (G, \ F/\(t))

(G \ 1) = P

dry...d
meas, (G \ F"(t) / /u =0. O

GIAFN (1)

3. SOME EXAMPLES

In this section we prove that the exponent p/4 + § in the inequality cannot be replaced
by a number smaller than p/4. It follows from such a statement.

Theorem 3. For f(z) = exp{d_}_, z;} almost surely in K(f, H) for r € E we have
1
1)

where E is a set of infinite asymptotically logarithmic measure and H = {e*™"} {w,} is a
sequence of independent random variables uniformly distributed on [0, 1].

Mf(T’, t) Z

In order to prove this theorem we need such a result.

Theorem 4 ([17]). For the entire function ¢g(z) = e* almost surely in K(g, H) we have

M
lim o> \/E (19)
rotoo fg (1) In/* g (1) 8
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Proof of Theorem 3. For the entire function f(z) = exp{)_4_, z;} we have InM,(r) = > r;

and for each § > 0 we get
dry...d
[t < e
ryeorp(ri 4. 4 rp)B

(1 +o0)?

Therefore the function f(z) satisfies condition (). From (19) we have for r € (rq, +00)?
Mg(r,t) > —Mf Hln1/4ug Ti)-

Denote 1(r) = In p14(r). Remark that
Ay={rir =tiri € (i, ta) = (¥ ((r1)/2), 07 (20(r)))} C

 {r TTvin) = (vt}

Indeed, if » € A; then for fixed r; we obtain

[Tv0) = v [Tee) > vim) H‘”“ —‘f,ffi)z

o (v)

i=1
1
T L(2p— 1)

o1 (W) + 20(r) + ..+ 2¢(r))?

Forre A= U:roo A, we get

p

1
My(rt) > —pp(r) [T pg(ri) > pas(r

op
=1

(Z In p14(7;) >p/4>

1 /4
> e ).

It remains to prove that the set A has infinite asymptotically logarithmic measure. It is known
[T1] that t < ¢~'(t) < 3t/2, t — +oo. Therefore,

+oo to +oo , t2 p—1
d?"l o d?"g d’f‘l o
measp = T— r—l =
2

ro t1 T0 t1

- / (1 (20(r1)) ~ ™! (#))’“@ >

™

T0
400 377Z)( ) 1 3 +ood
_ A - B
> / <ln(2w(r1)) ln( 1 )) i In 3 - +o00. ]
70 T0
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