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ON A NONLINEAR INTEGRABLE DIFFERENCE EQUATION
ON THE SQUARE

D. LEVI, R.I. YAMILOV

Abstract. We present a nonlinear partial difference equation defined on a square which is
obtained by combining the Miura transformations between the Volterra and the modified
Volterra differential-difference equations. This equation is not symmetric with respect to
the exchange of the two discrete variables. Its integrability is proved by constructing its
Lax pair.
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Аннотация. Мы представляем нелинейное разностное уравнение, определенное
на квадрате, которое получается комбинированием преобразований Миуры между
дифферениально-разностным уравнением Вольтерры и его модификацией. Это урав-
нение не является симметричным относительно перестановки двух дискретных пере-
менных. Его интегрируемость доказывается построением пары Лакса.

Ключевые слова: нелинейное интегрируемое разностное уравнение, пара Лакса, пре-
образование Миуры, уравнение Вольтерры.

The uncovery of new nonlinear integrable completely discrete equations is always a very
challenging problem as, by proper continuous limits, many other results on differential-difference
and partial differential equations can be obtained. In the case of differential equations by now
a lot is known starting from the pioneering works by Gardner, Green, Kruskal and Miura.
A summary of these results is already of public domain and presented for example in the
Encyclopedia of Mathematical Physics [5] or in the Encyclopedia of Nonlinear Science [6].
Among those results let us mention the classification scheme of nonlinear integrable partial
differential equations introduced by Shabat using the formal symmetry approach, see [11] for
a review. The classification of differential-difference equations has also been carried out using
the formal symmetry approach by Yamilov [18] and it is a well defined procedure which can be
easily computerized for many families of equations [10, 19].

In the completely discrete case the situation is different. Many researchers have tried to
carry out the approach of formal symmetries introduced by Shabat, without any success up
to now. One of the first exhaustive results in this context, based on completely different
ideas, is given by the Adler-Bobenko-Suris (ABS) classification of Z2-lattice equations defined
on the square lattice [2]. By now many results are known on the ABS equations, see for
instance [14, 15, 7, 8]. However the analysis of the transformation properties of these lattice

D. Levi, R.I. Yamilov On a nonlinear integrable difference equation on the square.
c© Levi D., Yamilov R.I. 2009.
R.I.Y. has been partially supported by the Russian Foundation for Basic Research (Grant numbers 07-01-

00081-a and 08-01-00440-a). D.L. has been partially supported by PRIN Project Metodi matematici nella teoria
delle onde nonlineari ed applicazioni – 2006 of the Italian Ministry of Education and Scientific Research. R.I.Y.
and D.L. thank the Isaac Newton Institute for Mathematical Sciences for their hospitality during the Discrete
Integrable Systems program and thank A. Tongas and P. Xenitidis for useful discussions.

Поступила 27 апреля 2009 г.

101



102 D. LEVI, R.I. YAMILOV

equations cannot be considered yet complete and new results which help the understanding of
the interrelations between them and some differential-difference equations can still be found [9].

A two-dimensional partial difference equation is a functional relation among the values of
a function u : Z × Z → C at different points of the lattice of indices i, j. It involves the
independent variables i, j and the lattice parameters α, β ∈ C:

E(i, j, ui,j, ui+1,j, ui,j+1, ...;α, β) = 0.

The so-called ABS list of integrable lattice equations is given by those affine linear (i.e.
polynomial of degree one in each argument) partial difference equations of the form

E(i, j, ui,j, ui+1,j, ui,j+1, ui+1,j+1;α, β) = 0, (1)

whose integrability is based on the consistency around a cube (or 3D-consistency) [2].
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Figure 1. A square lattice

The main idea of the consistency method is the following. One starts from a square lattice,
defines the variables on the vertices ui,j, ui+1,j, ui,j+1, ui+1,j+1 (see Figure 1) and considers the
multilinear equation relating these variables, namely eq. (1). By solving it for ui+1,j+1 one
obtains a rational expression and the same holds for any field variable. One then adjoins a
third direction and imagines the map giving ui+1,j+1,k+1 as being the composition of maps on
the various planes (see Figure 2). There exist three different ways to obtain ui+1,j+1,k+1 and
the consistency constraint is that they all lead to the same result. This gives strict conditions
on the nonlinear equation, but they are not sufficient to determine it completely. Two further
constraints have been introduced by Adler, Bobenko and Suris. They are:
• D4-symmetry. E is invariant under the group of the square symmetries:

E(ui,j, ui+1,j, ui,j+1, ui+1,j+1;α, β) = ±E(ui,j, ui,j+1, ui+1,j, ui+1,j+1; β, α) =

= ±E(ui+1,j, ui,j, ui+1,j+1, ui,j+1;α, β).

• Tetrahedron property. The function ui+1,j+1,k+1 is independent of ui,j,k.
The following transformations, which do not violate the two constraints listed above, are

assumed to identify equivalence classes:
• Action on all field variables by one and the same (independent of lattice parameter) Möbius
transformation.
• Simultaneous point change of all parameters.
Under the above constraints Adler, Bobenko and Suris obtained a complete classification of

Z2-lattice systems, whose integrability is ensured as the consistency around a cube also furnishes
their Lax pairs [2, 4, 12].

As it is known [17], the modified Volterra equation

ui,t = (u2
i − 1)(ui+1 − ui−1) (2)
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Figure 2. Three-dimensional consistency

is transformed into the Volterra equation vi,t = vi(vi+1 − vi−1) by two discrete Miura
transformations:

v±i = (ui+1 ± 1)(ui ∓ 1). (3)
For any solution ui of eq. (2), one obtains by the transformations (3) two solutions v+

i , v
−
i of

the Volterra equation. From a solution of the Volterra equation vi we obtain two solutions of
the modified Volterra equation ui,0 and ui,1. The composition of the Miura transformations (3)

vi = (ui+1,0 + 1)(ui,0 − 1) = (ui+1,1 − 1)(ui,1 + 1) (4)

provides a Bäcklund transformation for eq. (2). Eq. (4) provides a way to construct from a
solution ui,0 of eq. (2) a new solution ui,1. Iterating eq. (4), one can construct infinitely many
solutions:

· · · ← ui,−2 ← ui,−1 ← ui,0 → ui,1 → ui,2 → . . .

Rewriting eq. (4) as a chain of equations relating the solutions ui,j, we obtain the following
completely discrete equation on the square:

(ui+1,j + 1)(ui,j − 1) = (ui+1,j+1 − 1)(ui,j+1 + 1). (5)

This equation does not belong to the ABS classification, as it is not invariant under the
exchange of i and j. However eq. (5) is invariant under a rotational symmetry of π. By
a straightforward calculation, using a symbolic computation program like Maple, one can
easily show its 3D-inconsistency. Recently Adler, Bobenko and Suris [3] extended the previous
definition to systems of equations 3D-consistent on a cube to the case when the two equations
of the Lax pair are different. Then eq. (5) can be embedded into such a 3D-consistent system
[16]. Moreover eq. (5) can be easily transformed in the discrete version of the Volterra–Kac–van
Moerbeke equation [13].

The construction of the Lax pair can be done in a way that is parallel to the derivation of the
nonlinear difference equation done above. Let us consider the spectral problem for the modified
Volterra equation (2)

Li =

(
−λ−1 ui
−ui λ

)
, (6)

found in [1], and the standard scalar spectral problem of the Volterra equation, written in
matrix form,

Mi =

(
λ− λ−1 −vi

1 0

)
. (7)
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The existence of the two Miura transformations (3) between the two equations imply the
existence of two nonsingular Darboux matrices E(+)

i , E
(−)
i between the spectral problems:

E
(+)
i =

(
1 λvi(ui,0 + 1)
λ −vi(1 + ui,0)

)
, E

(−)
i =

(
−1 λvi(ui,1 − 1)
λ −vi(1− ui,1)

)
. (8)

The matrix E(+)
i will provide a solution ui,0 of the modified Volterra equation, while the matrix

E
(−)
i will provide a different solution, ui,1. So, the two solutions ui,0 and ui,1 are given by the

two Lax equations

E
(+)
i+1Mi = Li,0E

(+)
i , E

(−)
i+1Mi = Li,1E

(−)
i , (9)

where

Li,j =

(
−λ−1 ui,j
−ui,j λ

)
. (10)

The equation (4), relating the two solutions ui,0 and ui,1, is obtained by eliminating from eqs.
(9) the matrix Mi and the dependence of vi. So its Lax equation is given by

Ni+1,0Li,0 = Li,1Ni,0, (11)

where Ni,0 = E
(−)
i (E

(+)
i )−1. Taking into account the definition (8), formulae (4) for vi, the

discrete equation (5), and introducing as before the chain of equations for any j, we get that
the Lax equation associated to eq. (5) is given by

Ni+1,jLi,j = Li,j+1Ni,j,

with Li,j given by eq. (10) and

Ni,j =

(
λwi,j − λ−1 −(wi,j + 1)
wi,j + 1 λ− λ−1wi,j

)
, wi,j =

ui,j + 1

ui,j+1 − 1
.

This is not the only case when we can encounter 3D–inconsistent integrable equations. For
example, the modified–modified Volterra equation will provide in the same way a discrete
equation on the square

(1 + ui,jui+1,j)(µui+1,j+1 + µ−1ui,j+1) = (1 + ui,j+1ui+1,j+1)(µui,j + µ−1ui+1,j), (12)

where µ is an arbitrary non-zero constant. This equation has the same symmetry properties as
eq. (5) and is also 3D–inconsistent when µ4 6= 1. For µ4 = 1 eq. (12) is 3D–consistent, but in
this case the equation is degenerate and can be written as (Tj±1)

µui,j+µ
−1ui+1,j

1+ui,jui+1,j
= 0, where Tj is

the shift operator for the j index. Also eq. (12) can be embedded into a system 3D-consistent
on a cube [16].
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