УДК 517.958:533.7

КОЛЛАПС ИЛИ МГНОВЕННЫЙ ИСТОЧНИК ГАЗА НА ПРЯМОЙ

Е.В. МАКАРЕВИЧ

Аннотация. В работе построено частично инвариантное решение ранга 0, дефекта 2 на четырехмерной подалгебре. Описано движение частиц, выделенного объема газа (контактные характеристики). Построено движение звуковой поверхности, где скорость частиц совпадает со скоростью звука. Описано движение звуковых характеристик и звукового коноида. Решение задает движение газа из всего пространства по направлению к прямой для отрицательных значений времени (коллапс) и от прямой во все пространство для положительных значений времени (мгновенный источник). При бесконечно больших по абсолютной величине значениях времени все пространство занято дозвуковым движением. Звуковая поверхность движется из бесконечно удаленных точек к прямой. Показано, что звуковые характеристики и точки звукового коноида с течением времени приближаются к звуковой поверхности.

Ключевые слова: газовая динамика, частично инвариантное решение, коллапс, звуковой коноид.

Введение

Уравнения газовой динамики (УГД)

$$\rho D\vec{u} + \nabla p = 0, D\rho + \rho \nabla \cdot \vec{u} = 0, Dp + \rho c^2 \nabla \cdot \vec{u} = 0, \tag{1}$$

где $D = \partial_t + \vec{u} \cdot \nabla$ — полная производная по времени, \vec{u} — вектор скорости, p — давление, ρ — плотность, $c^2 = \frac{\partial p}{\partial \rho}$ — квадрат скорости звука, с уравнением состояния с разделенной плотностью

$$\rho = h(p)S \tag{2}$$

(S - функция энтропии) допускают алгебру Ли операторов L_{12} [1]. В работе [1] поставлена задача перечисления всех подмоделей УГД. Для этого нужна оптимальная система подалгебр. Оптимальная система неподобных подалгебр для УГД с уравнением состояния (2) приведена в [2]. Для оптимальной системы подалгебр L_{12} составлена система вложенных подалгебр, изображенная в виде графа. На примере 5-мерной самонормализованной подалгебры рассмотрена иерархия подмоделей УГД [3]. Составлен граф всех вложенных в нее подалгебр. Получены все инвариантные подмодели графа. Приведены примеры регулярных частично инвариантных подмоделей (РЧИП), нерегулярных частично инвариантных подмоделей (РЧИП), нерегулярных частично инвариантных подмоделей и вложены друг в друга так, что решение инвариантной подмодели надалгебры является частным решением инвариантной подмодели подалгебры. Таким образом, точное решение для пятимерной подалгебры является решением для подмоделей меньшей размерности [4].

E.V. MAKAREVICH, THE COLLAPSE OR THE SOURCE OF GAS ON THE STRAIGHT LINE. © Макаревич Е.В. 2012.

Работа выполнена при поддержке гранта №11.G34.31.0042 Правительства РФ (Постановление №220). Поступила 19 октября 2012 г.

Е.В. МАКАРЕВИЧ

В настоящей статье рассмотрена 4-мерная подалгебра 12-мерной алгебры Ли. На подалгебре из графа Γ_5 работы [4] построено частично инвариантное решение ранга 0, дефекта 2. Описано движение частиц, выделенного объема газа (контактные характеристики). Построено движение звуковой поверхности, где скорость частиц совпадает со скоростью звука. Распространение слабых разрывов [5] на этом решении задается звуковыми характеристиками и звуковым коноидом. Решение задает движение газа из всего пространства по направлению к прямой при $-\infty < t < 0$ (коллапс) и от прямой во все пространство при $0 < t < +\infty$ (мгновенный источник). При $t \to -\infty$ все пространство занято дозвуковым движением. Звуковая поверхность движется из бесконечно удаленных точек к некоторой прямой. Показано, что слабые разрывы накапливаются на звуковой поверхности.

1. ЧАСТИЧНО-ИНВАРИАНТНОЕ РЕШЕНИЕ

На подалгебре 4.58 из табл. З работы [2] строим частично-инвариантное решение ранга 0, дефекта 2. Базис подалгебры в декартовой системе координат имеет вид: $\{b\partial_x + \partial_y, t\partial_y + \partial_y, t\partial_z + \partial_w, t\partial_t - u\partial_y - v\partial_y - w\partial_w + 2\rho\partial_\rho\}$. Для построения решения вычисляем точечные инварианты. Из выражений для инвариантов находим скорости, при этом давление и плотность предполагаем функциями общего вида. Представление решения имеет вид:

$$u = t^{-1}u_0, v = t^{-1}(b^{-1}(v_0 - x) + y), w = t^{-1}(w_0 + z), \rho = \rho(t, x, y, z), p = p(t, x, y, z),$$

и₀, v₀, w₀ — константы (инварианты). За счет переносов, которые допускают УГД, делаем $v_0 = w_0 = 0$. При подстановке представления решения в (1) получим следующие соотношения

$$t\rho_t + u_0\rho_x + (y - b^{-1}x)\rho_y + z\rho_z + 2\rho = 0 \Rightarrow \rho = t^{-2}R(x_1, y_1, z_1),$$

$$tp_t + u_0p_x + (y - b^{-1}x)p_y + zp_z + 2\frac{h}{h'} = 0 \Rightarrow h(p) = t^{-2}H(x_1, y_1, z_1),$$

$$p_x = u_0t^{-2}\rho, \quad p_y = u_0b^{-1}t^{-2}\rho, \quad p_z = 0,$$

(3)

где $x_1 = x - u_0 \ln |t|, y_1 = t^{-1}(y - b^{-1}(x + u_0)), z_1 = t^{-1}z$. Из (3) следует $H_{x_1} = H_{y_1} = H_{z_1} = H_{z_1}$ $= u_0 = 0$, то есть H = 1. Получили решение

$$u = 0, v = t^{-1}(y - b^{-1}x), w = t^{-1}z, \rho = t^{-2}R(x, v, w), h(p) = t^{-2}$$
(4)

на подалгебре 4.58. Такое же решение ранга 0, дефекта 2 получено на подалгебре $4.51: \{b\partial_x + \partial_y, t\partial_y + \partial_v, t\partial_z + \partial_w, a(t\partial_t + x\partial_x + y\partial_y + z\partial_z) + t\partial_t - u\partial_u - v\partial_v - w\partial_w + 2\rho\partial_\rho\} [2].$

2.Движение частиц и объемов

Частица газа двигается согласно уравнению

$$\frac{d\vec{x}}{dt} = \vec{u}(\vec{x},t), \vec{x} = (x,y,z).$$

$$\tag{5}$$

Семейство интегральных кривых уравнения (5) есть мировые линии частиц в \mathbb{R}^4 . Проекция мировых линий в $\mathbb{R}^{3}(\vec{x})$ — траектории частиц. С формулами (4) уравнения (5) имеют интегралы

$$\begin{cases} x = x_0, \\ y = b^{-1}x_0 + v_0 t, \\ z = w_0 t, \end{cases}$$
(6)

где x_0, v_0, w_0 — постоянные — глобальные лагранжевы координаты. Матрица Якоби

 $J = \frac{\partial(x, y, z)}{\partial(x_0, v_0, w_0)} = \begin{vmatrix} 1 & 0 & 0 \\ b^{-1} & t & 0 \\ 0 & 0 & t \end{vmatrix}$ имеет определитель, равный t^2 . При t = 0 определитель

матрицы J равен 0, ранг матрицы равен 1. Следовательно, при t = 0 все частицы попадают на прямую l : by = x, z = 0, которая есть многообразие коллапса при $-\infty < t < 0$ или многообразие мгновенного источника при $0 < t < +\infty$. Если α — угол между осью Oy и прямой l, то tg $\alpha = b$.

Замечание. Замена $t \to -t, v \to -v, w \to -w$ оставляет решение (4) инвариантным. Значит, при t > 0 происходит мгновенный источник (взрыв) с движением частиц по тем же мировым линиям, что и при коллапсе t < 0, но в обратном направлении. Следовательно, достаточно рассмотреть движение частиц либо при $-\infty < t < 0$, либо при $0 < t < +\infty$.

Формулы (6) задают прямую в \mathbb{R}^4 и параметрическое уравнение прямой (траекторию) в $\mathbb{R}^3(\vec{x})$, $(0, v_0, w_0)$ — направляющий вектор прямой в \mathbb{R}^3 . Частицы двигаются по прямым линиям в плоскостях, параллельных плоскости yOz.

Рассмотрим движение выделенного объема газа при t < 0. Для этого достаточно рассмотреть движение сечения этого объема плоскостью, параллельной плоскости yOz, так как в других параллельных плоскостях движение происходит точно так же. Пусть при $t = t_0 < 0$ сечение плоскостью $x = x_0$ есть окружность радиуса R_0 с центром (y_{01}, z_{01}) :

$$(y_0 - y_{01})^2 + (z_0 - z_{01})^2 = R_0^2.$$
⁽⁷⁾

Возможны следующие случаи.

а) Окружность находится в плоскости, параллельной yOz, так, что точка M пересечения l с плоскостью находится вне окружности. Координаты центра окружности в момент t_0 задаются уравнениями

$$\begin{cases} y_{01} = b^{-1}x_0 + v_{01}t_0, \\ z_{01} = w_{01}t_0, \end{cases}$$
(8)

где v_{01}, w_{01} — скорости центра окружности. Точки на границе области в момент t_0 задаются уравнениями

$$\begin{cases} y_0 = b^{-1} x_0 + v_0 t_0, \\ z_0 = w_0 t_0. \end{cases}$$
(9)

Подстановка (8), (9) в (7) дает связь между глобальными лагранжевыми координатами точек на границе области и центра

$$(v_0 - v_{01})^2 + (w_0 - w_{01})^2 = \frac{R_0^2}{t_0^2}.$$
(10)

Подстановка (6) в (10) дает уравнение движения границы области

$$(y - b^{-1}x_0 - v_{01}t)^2 + (z - w_{01}t)^2 = \frac{R_0^2 t^2}{t_0^2}.$$
(11)

При $t \to 0$ радиус $\frac{R_0^2 t^2}{t_0^2}$ уменьшается и в момент t = 0 стягивается в точку. При t > 0 частицы двигаются в той же плоскости симметрично относительно точки $M(x_0, b^{-1}x_0, 0)$ (см. замечание, рис. 1).

б) Окружность находится в плоскости, параллельной yOz, так, что точка M пересечения l с плоскостью находится на окружности. Координаты центра окружности (8) в момент $t_0 < 0$ удовлетворяют условию

$$(y_{01} - b^{-1}x_0)^2 + z_{01}^2 = R_0^2 \Rightarrow v_{01}^2 + w_{01}^2 = \frac{R_0^2}{t_0^2}.$$

Тогда уравнение движения границы области принимает вид

$$(y - b^{-1}x_0) (y - b^{-1}x_0 - 2v_{01}t) + z (z - 2w_{01}t) = 0.$$

При $t \to 0$ частицы с окружности стягиваются в точку на прямой. Точка касания M окружности и прямой l остается неподвижной. При t > 0 частицы двигаются симметрично относительно точки M (рис. 2).

Рис. 1. Движение кругового сечения. Точка М вне круга

РИС. 2. Движение кругового сечения. Точка М на круге

в) Точка пересечения M прямой l и плоскости, параллельной плоскости yOz, находится внутри окружности. При $t \to 0$ частицы с окружности стягиваются в точку на прямой. При t > 0 частицы, находящиеся в одной точке прямой l ($\rho = \infty$), разлетаются по всей плоскости yOz симметрично относительно точки M(рис. 3).

РИС. 3. Движение кругового сечения. Точка М внутри круга

3. Движение звуковой поверхности

Под звуковой поверхностью понимается поверхность, на которой скорость частиц равна скорости звука

$$u^2 + v^2 + w^2 = c^2. (12)$$

Для уравнения состояния с разделенной плотностью (2) скорость звука определяется выражением $c^2 = \frac{h(p)}{\rho h'(p)}$. На решении (4) уравнение звуковой поверхности (12) принимает вид

$$\left(y - b^{-1}x\right)^2 + z^2 = \frac{t^2 K(t)}{R\left(x, t^{-1}(y - b^{-1}x), t^{-1}z\right)},\tag{13}$$

где $K^{-1}=h'\left(g(t^{-2})\right),\,g$ — обратная функция кh.Рассмотрим политропный газ с уравнением состояния

$$p = B(S)\rho^{\gamma}, 1 < \gamma < 2. \tag{14}$$

Из (2) и (14) следует $h(p) = p^{1/\gamma}$. Тогда в (13) $t^2 K(t) = \gamma t^{4-2\gamma}$. Уравнение (13) принимает вид

$$\left(y - b^{-1}x\right)^2 + z^2 = \frac{\gamma t^{4-2\gamma}}{R\left(x, t^{-1}(y - b^{-1}x), t^{-1}z\right)}.$$
(15)

Таким образом, вид звуковой поверхности зависит от вида функции R(x, v, w), и выбором этой функции можно задать движение звуковой поверхности. Рассмотрим различные виды звуковых поверхностей.

1) Пусть $R = (t^{-2}(y - b^{-1}x)^2 + t^{-2}z^2)^{-1}x^{-1}$, тогда соответствующая звуковая поверхность есть плоскость $x = \frac{1}{\gamma}t^{4-2\gamma}$. При $-\infty < t < 0$ звуковая поверхность движется по направлению к плоскости x = 0 со стороны положительных значений x. Область со сверх-звуковыми скоростями находится за фронтом движения звуковой поверхности, а область дозвуковых скоростей — перед фронтом. При $0 < t < +\infty$ звуковая поверхность движет-ся от плоскости x = 0 в обратном направлении. Область со сверхзвуковыми скоростями находится по направлении. Область со сверхности движения звуковой поверхности движет-ся от плоскости x = 0 в обратном направлении. Область со сверхзвуковыми скоростями находится перед фронтом, с дозвуковыми скоростями — за фронтом движения звуковой поверхности.

2) Пусть $R = x^{-1}$, тогда уравнение звуковой поверхности принимает вид $(y - b^{-1}x)^2 + z^2 = \gamma x t^{4-2\gamma}$. Это уравнение описывает эллиптический параболоид. При $t \to -\infty$ звуковая поверхность асимптотически стремится к плоскости x = 0. При $t \to 0$ эллиптический параболоид вырождается в прямую by = x, z = 0. Внутри звукового параболоида $(y - b^{-1}x)^2 + z^2 < \gamma x t^{4-2\gamma}$ скорость частиц $\sqrt{(y - b^{-1}x)^2 + z^2} |t|^{-1} < \sqrt{\gamma x} |t|^{1-\gamma}$ меньше скорости звука $c = \sqrt{\gamma x} |t|^{1-\gamma}$. Снаружи звукового параболоида скорость частиц

Е.В. МАКАРЕВИЧ

сверхзвуковая. При $t \to +\infty$ звуковая поверхность асимптотически стремится к плоскости x=0.

3) Подробно рассмотрим случай, когда функция R — постоянная ($R = \rho_0$). Звуковая поверхность задается уравнением

$$\left(y - b^{-1}x\right)^2 + z^2 = c_0^2 t^{4-2\gamma},\tag{16}$$

где $c_0^2 = \gamma \rho_0^{-1}$. Скорость звука во всех точках пространства равна $c = c_0 |t|^{1-\gamma}$. Звуковая поверхность представляет собой эллиптический цилиндр с образующей прямой, параллельной оси цилиндра (by = x, z = 0), и с направляющей окружностью $y^2 + z^2 = c_0^2 t^{4-2\gamma}$ в плоскости x = 0. Повернем оси x и y на угол α вокруг оси z так, что ось x перейдет в прямую by = x, z = 0. Тогда в новых переменных (x', y', z') направляющая кривая есть эллипс $y'^2(1 + b^{-2}) + z'^2 = c_0^2 t^{4-2\gamma}$. При $t \to 0$ цилиндр схлопывается на ось x'. Снаружи звукового цилиндра $\sqrt{(y - b^{-1}x)^2 + z^2} > c_0 |t|^{2-\gamma}$ скорость частиц $\sqrt{(y - b^{-1}x)^2 + z^2} |t|^{-1} > c_0 |t|^{1-\gamma} = c$ больше скорости звука. Внутри звукового цилиндра скорость частиц дозвуковая. Так как при $t \to 0$ скорость звука возрастает во всем пространстве, а скорость каждой частицы не меняется, то частицы вне звуковой поверхности со временем оказываются внутри звуковой поверхности. Скорости частиц, которые были сверхзвуковыми, становятся дозвуковыми после прохождения звуковой поверхности.

Утверждение. Любая частица, находящаяся в некоторый момент времени t_0 на звуковом цилиндре, в следующий момент времени $t_0 < t < 0$ окажется внутри звукового цилиндра.

Доказательство. Рассмотрим сечение звуковой поверхности плоскостью x = 0. В плоскости yOz получим сечение звуковой поверхности — окружность $y^2 + z^2 = c_0^2 t^{4-2\gamma}$. В момент $t_0 < 0$ возьмем точку $A(0, 0, z_0)$ на звуковом цилиндре $z_0 = c_0 |t_0|^{2-\gamma}$, тогда частица, находящаяся в точке A, по (6) имеет лагранжевы координаты $x_0 = 0, v_0 = 0, z_0 = w_0 t_0$. Эта частица движется по закону $x = 0, y = 0, z = z_0 t/t_0 = c_0 |t|^{1-\gamma} |t|$. Радиус сечения звукового цилиндра изменяется по закону $r = c_0 |t|^{2-\gamma}$. Сравним при $t_0 < t < 0, |t| < |t_0|$ законы движения частицы и точки A звуковой поверхности: $\frac{z}{r} = \left(\frac{|t_0|}{|t|}\right)^{1-\gamma} < 1$. Значит, частица попадает внутрь звукового цилиндра.

4. Движение звуковых характеристик

Распространение слабых разрывов (далее возмущений) задается звуковыми характеристиками и звуковым коноидом. Для отыскания уравнений характеристик, заданных уравнением $F(t, \vec{x}) = \text{const}$, решаем уравнение [5]

$$F_t + uF_x + vF_y + wF_z = \pm c\sqrt{F_x^2 + F_y^2 + F_z^2}.$$
(17)

Для (17) ставится задача Коши: $F(t_0, \vec{x}) = F_0(\vec{x})$. Тогда решение задачи Коши определяет характеристику, проходящую через поверхность $F_0(\vec{x}) = \text{const.}$ Решение задачи Коши строится методом характеристик. Характеристики уравнения (17) называются бихарактеристиками исходных УГД [5]. Они удовлетворяют уравнениям

$$\frac{d\vec{x}}{dt} = \vec{u} \pm c \frac{\nabla F}{|\nabla F|}, \frac{dF_j}{dt} = -\vec{u_j} \cdot \nabla F \mp c_j |\nabla F|, j = x, y, z.$$

На решении (4) в случае $R = \rho_0$ уравнения бихарактеристик для политропного газа имеют вид

$$\frac{dt}{-1} = \frac{dx}{\mp c_0 |t|^{1-\gamma} \frac{F_x}{|\nabla F|}} = \frac{dy}{-\left(\frac{y}{t} - \frac{x}{bt} \pm c_0 |t|^{1-\gamma} \frac{F_y}{|\nabla F|}\right)} = \frac{dz}{-\left(\frac{z}{t} \pm c_0 |t|^{1-\gamma} \frac{F_z}{|\nabla F|}\right)} = \frac{-btdF_x}{F_y} = \frac{tdF_y}{F_y} = \frac{tdF_z}{F_z}.$$
(18)

Интегралы системы (18) таковы

x

y

z

$$F_{x} = F_{1} - \frac{F_{2}}{bt}, \quad F_{y} = \frac{F_{2}}{t}, \quad F_{z} = \frac{F_{3}}{t},$$

$$|\nabla F| = |t|^{-1} \sqrt{(F_{1}t - b^{-1}F_{2})^{2} + F_{2}^{2} + F_{3}^{2}},$$

$$x = \mp \int_{t_{0}}^{t} \frac{c_{0}|t|^{1-\gamma} (F_{1}t - b^{-1}F_{2}) dt}{\sqrt{(F_{1}t - b^{-1}F_{2})^{2} + F_{2}^{2} + F_{3}^{2}}} + x_{0},$$

$$y = \mp t \int_{t_{0}}^{t} \frac{c_{0}|t|^{1-\gamma} ((1 + b^{-2})F_{2} - b^{-1}tF_{1}) dt}{t\sqrt{(F_{1}t - b^{-1}F_{2})^{2} + F_{2}^{2} + F_{3}^{2}}} \mp$$

$$\mp b^{-1} \int_{t_{0}}^{t} \frac{c_{0}|t|^{1-\gamma} (F_{1}t - b^{-1}F_{2}) dt}{\sqrt{(F_{1}t - b^{-1}F_{2})^{2} + F_{2}^{2} + F_{3}^{2}}} + b^{-1}x_{0} + (y_{0} - b^{-1}x_{0}) \frac{t}{t_{0}},$$

$$z = \mp t \int_{t_{0}}^{t} \frac{c_{0}|t|^{1-\gamma}F_{3}dt}{t\sqrt{(F_{1}t - b^{-1}F_{2})^{2} + F_{2}^{2} + F_{3}^{2}}} + z_{0}\frac{t}{t_{0}},$$

$$(19)$$

где $x_0, y_0, z_0, F_i, i = 1, 2, 3$ — постоянные. При $t = t_0$ значения интегралов (20) x_0, y_0, z_0 удовлетворяют уравнению $F_0(x_0, y_0, z_0) = \text{const}, \nabla F|_{t=t_0} = \nabla_0 F_0$. Отсюда находим значения постоянных интегралов (19) $F_1 = F_{0x_0} + b^{-1} F_{0y_0}, F_2 = t_0 F_{0y_0}, F_3 = t_0 F_{0z_0}$. В равенствах (20) остается два свободных параметра. Таким образом, равенства (20) задают движущуюся двумерную поверхность в \mathbb{R}^3 .

Пусть начальная поверхность, на которой возникает возмущение в момент времени $-\infty < t_0 < 0$, есть эллиптический цилиндр, соосный звуковому цилиндру

$$F_0: (y_0 - b^{-1}x_0)^2 + (1 + b^{-2})z_0^2 = R_0^2.$$

Тогда уравнения звуковых характеристик (20), проходящих через F_0 :

$$F_{-}:(y-b^{-1}x)^{2}+(1+b^{-2})z^{2}=t^{2}\left(\frac{R_{0}}{|t_{0}|}-c_{0}\frac{\sqrt{1+b^{-2}}}{(\gamma-1)}\left(|t|^{1-\gamma}-|t_{0}|^{1-\gamma}\right)\right)^{2}=R_{-}^{2},$$

$$F_{+}:(y-b^{-1}x)^{2}+(1+b^{-2})z^{2}=t^{2}\left(\frac{R_{0}}{|t_{0}|}+c_{0}\frac{\sqrt{1+b^{-2}}}{(\gamma-1)}\left(|t|^{1-\gamma}-|t_{0}|^{1-\gamma}\right)\right)^{2}=R_{+}^{2},$$

задают эллиптические цилиндры, полуоси которых изменяются со временем. Возможны два случая.

1) Если возмущение возникло на поверхности, охватывающей звуковой цилиндр $\left(\frac{R_0}{\sqrt{1+h^{-2}}} > c_0 |t_0|^{2-\gamma}\right)$, то в сверхзвуковом движении оно пойдет внутрь этой поверхности по F_- и F_+ характеристикам. Возмущение, которое пошло по F_- характеристике, пройдет через звуковой цилиндр при

$$\frac{c_0|t_0|\left(\sqrt{1+b^{-2}}+(\gamma-1)\right)}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}} \leqslant |t|^{\gamma-1} \leqslant \frac{c_0|t_0|\gamma\sqrt{1+b^{-2}}}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$$

и схлопнется на прямую by = x, z = 0 при $|t|^{\gamma-1} = \frac{c_0|t_0|\sqrt{1+b^{-2}}}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$. Далее возмущение отразится от прямой и пройдет через звуковую поверхность еще раз при

$$\frac{c_0|t_0|\sqrt{1+b^{-2}}(2-\gamma)}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}} \leqslant |t|^{\gamma-1} \leqslant \frac{c_0|t_0|\left(\sqrt{1+b^{-2}}-(\gamma-1)\right)}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$$

Большая из полуосей F₋ дойдет до слоя радиуса r^{*} (точка остановки, см. рис. 4) при

$$|t|^{\gamma-1} = \frac{c_0|t_0|\sqrt{1+b^{-2}}(2-\gamma)}{R_0(\gamma-1) + \sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$$

При t = 0 возмущение коллапсирует на прямую. Возмущение, которое распространяется по F_+ характеристике, не проходит через звуковую поверхность и схлопывается на прямую by = x, z = 0 при t = 0 (рис. 4)

Рис. 4. Характеристики при t < 0

2) Если звуковой цилиндр охватывает поверхность, на которой возникло возмущение $(R_0 < c_0 |t_0|^{2-\gamma})$, то часть возмущения F_+ пойдет вне $F_0 = \text{const}$, на которой возникло возмущение, а другая часть F_- пойдет внутрь $F_0 = \text{const}$. Возмущение, которое пошло по F_+ характеристике, пересекает звуковой цилиндр при

$$\frac{c_0|t_0|\sqrt{1+b^{-2}}(2-\gamma)}{\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}-R_0(\gamma-1)} \leqslant |t|^{\gamma-1} \leqslant \frac{c_0|t_0|\left(\sqrt{1+b^{-2}}-(\gamma-1)\right)}{\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}-R_0(\gamma-1)}$$

и большая из полуосе
й F_+ дойдет до слоя радиуса r_+^\ast при

$$|t|^{\gamma-1} = \frac{c_0|t_0|\sqrt{1+b^{-2}}(2-\gamma)}{\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma} - R_0(\gamma-1)}.$$

Далее возмущение остановится, пойдет в обратную сторону и схлопнется на прямую при t = 0 (рис. 5). Возмущение, которое пошло по F_{-} характеристике, дойдет до прямой

by=x,z=0при $|t|^{\gamma-1}=\frac{c_0|t_0|\sqrt{1+b^{-2}}}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}},$ отразится от нее, пересечет звуковой цилиндр при

$$\frac{c_0|t_0|\sqrt{1+b^{-2}(2-\gamma)}}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}} \leqslant |t|^{\gamma-1} \leqslant \frac{c_0|t_0|\left(\sqrt{1+b^{-2}}-(\gamma-1)\right)}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$$

При $|t|^{\gamma-1} = \frac{c_0|t_0|\sqrt{1+b^{-2}(2-\gamma)}}{R_0(\gamma-1)+\sqrt{1+b^{-2}}c_0|t_0|^{2-\gamma}}$ большая полуось F_- достигнет значения r_-^*

(точка остановки), и при t = 0 возмущение вновь схлопнется на прямую (рис. 5).

Рис. 5. Характеристики при t < 0

5. Движение характеристического коноида

Характеристический коноид является геометрическим местом всех бихарактеристик (18), выходящих из данной точки $P(t_0, \vec{x_0})$ [5]. При $t = t_0$ интегралы (20) удовлетворяют условиям $\vec{x}(t_0) = \vec{x_0}$, а при растяжении параметров $F_j, j = 1, 2, 3$, значения интегралов не меняются. Значит, можно считать $F_1^2 + F_2^2 + F_3^2 = 1$, и для параметров можно ввести сферические координаты на единичной сфере. Таким образом (20) задает поверхность (коноид) в параметрическом виде, движущуюся в \mathbb{R}^3 .

Интегралы (20) не вычисляются аналитически, поэтому были проведены численные расчеты в среде Maple 12. Рассмотрим движение коноида из некоторой фиксированной точки. Возможны следующие случаи.

1) Пусть эта точка в момент времени $t_0 < 0$ находится в области сверхзвукового движения (вне звукового цилиндра). Тогда, как следует из рассуждений для звуковых характеристик, в сверхзвуковой области коноид будет двигаться в направлении звукового цилиндра. При этом при $t \to 0$ некоторые точки коноида пересекут звуковой цилиндр, дойдут до оси цилиндра, пересекут другую сторону звукового цилиндра. Наступит момент, когда эти точки остановятся на некотором отдалении от звукового цилиндра и пойдут в обратном направлении. Точки коноида, находящиеся в дозвуковой области, будут двигаться вдоль оси цилиндра. Все точки коноида схлопнутся на прямую l при t = 0 (рис. 6, 7). а) Вид со стороны ос
и \boldsymbol{z}

б) Вид со стороны прямой l

Рис. 6. Два положения звуковой поверхности и коноида в моменты $t_1 < t_2 < 0$, когда вершина коноида находится в сверхзвуковой области

РИС. 7. Положение звуковой поверхности и коноида, когда коноид пересекает звуковой цилиндр дважды

2) Пусть начало коноида в момент времени $t_0 < 0$ находится в области дозвукового движения (внутри звукового цилиндра). Тогда при $t \to 0$ некоторые точки коноида выйдут в сверхзвуковую зону, удаляясь от звукового цилиндра. Наступит момент, когда эти точки остановятся и начнут двигаться к звуковому цилиндру. Другие точки, оставшиеся в дозвуковой области, будут двигаться вдоль оси цилиндра (рис. 8). Все точки схлопнутся на прямую l при t = 0. а) Вид со стороны оси z

б) Вид со стороны прямой *l*

РИС. 8. Три положения звуковой поверхности и коноида в моменты $t_3 < t_1 < t_2 < 0$, когда вершина коноида находится в дозвуковой области

Таким образом, показано, что звуковые характеристики и точки звукового коноида с течением времени (t < 0) приближаются к звуковой поверхности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Овсянников Л.В. *Программа подмодели. Газовая динамика* // ПММ, Т. 58, Вып. 4, 1994. С. 30–55.
- Макаревич Е.В. Оптимальная система подалгебр, допускаемых уравнениями газовой динамики в случае уравнения состояния с разделенной плотностью // Сибирские электронные математические известия, Т. 8, 2011. С. 19–38.
- S.V. Khabirov Hierarchy of submodels of differential equations // Archives of ALGA, V. 9. 2012. P. 79–94.
- Макаревич Е.В. Иерархия подмоделей уравнений газовой динамики с уравнением состояния с разделенной плотностью // Сибирские электронные математические известия, Т. 9, 2012. С. 306–328.
- 5. Овсянников Л.В. *Лекции по основам газовой динамики* // Москва–Ижевск: Институт компьютерных исследований, 2003. 336 с.

Елена Владимировна Макаревич,

Уфимский государственный авиационный технический университет,

Лаборатория "Групповой анализ математических моделей

естествознания, техники и технологий",

ул. Карла Маркса, 12,

450000, г. Уфа, Россия

E-mail: Makarevich_EV@mail.ru