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ON INFINITESIMAL RECIPROCAL-TYPE
TRANSFORMATIONS IN GASDYNAMICS. LIE GROUP

CONNECTIONS AND NONLINEAR SELF-ADJOINTNESS

N.H. IBRAGIMOV, C. ROGERS

Abstract. Bateman-type reciprocal transformations are represented as non-local
infinitesimal symmetries of the governing equations of steady, two-dimensional, inviscid
gasdynamics. In particular, this representation allows the construction of a novel non-local
conservation law using the recently introduced concept of nonlinear self-adjointness.
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Introduction

This paper is dedicated to Lev Ovsyannikov for his immense
contributions to applications of Lie group theory in gasdynamics.

Reciprocal relations in steady two-dimensional gasdynamics have their origin in work
of Bateman [1, 2]. These multi-parameter transformations leave invariant the governing
equations, up to the equation of state. Loewner [3], in the context of irrotational planar
gasdynamics undertook the systematic reduction of hodograph systems via finite matrix
Bäcklund transformations to Cauchy-Riemann, Tricomi or classical wave canonical forms in
subsonic, transonic and supersonic régimes respectively. Such reduction may be achieved
for certain multi-parameter equations of state which may be used to approximate real gas
behaviour. A detailed account of that work and reciprocal relations, along with other physical
applications is given in [4]. Subsequently Loewner [5] extended his analysis to consider
infinitesimal Bäcklund transformations which asymptotically reduce the hodograph equations
to appropriate tractable canonical forms. In later work, a remarkable connection has been
made in [6, 7] between the class of infinitesimal Bäcklund transformations introduced in a
gasdynamics context in [4] and modern soliton theory of 2+1-dimensions [8, 9]. Thus, if the
continuous parameter of the infinitesimal Bäcklund transformations of [4] is regarded as a third
independent variable, then a triad of linear matrix equations is evident in the Loewner scheme
and its generalisations. The compatibility conditions for the latter generate a broad class of novel
2+1-dimensional integrable non-linear evolution equations wherein the spatial variables have
equal standing. The 𝜕-dressing method was described for these systems in [7]. A characteristic
feature of use 2+1-dimensional master systems is that they admit a compact representation
in terms of a triad of eigenfunction matrices. The class includes, inter alia higher-dimensional
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integrable generalizations of the chiral-fields model, non-Abelian sine-Gordon and Toda lattice
equations. A 2+1-dimensional integrable generalization of the classical sine-Gordon emerges
naturally in this context (see e.g. [10, 11, 12, 13, 14, 15, 16]). With regard to the class of finite
Bäcklund transformations introduced by Loewner in [4], it was established in [17] that these may
represented as a composition of gauge and classical Darboux-type transformations. This result
as used to construct iterated versions of Loewner-type transformations based on established
procedures in soliton theory. It is noted that Bateman-type reciprocal transformations of
steady rotational gasdynamics may be derived as a specialisation of the class of finite Loewner
transformations [27].

Reciprocal transformations for non-steady physical systems were originally introduced in the
setting of gasdynamics and magnetogasdynamics in [18, 19]. These constitute multi-parameter
transformations which leave invariant the governing continuity and momentum equations but
not, in general, the equation of state. The action of the reciprocal transformations on the
gasdynamic or magneto-gasdynamic system is to provide a link to associated gasdynamic
(magnetogasdynamic) systems with a new multi-parameter class of equations of state. Such
reciprocal and related invariant transformations may be applied to classes of shock propagation
problems in the manner described by Ustinov [20]. In recent work [21], the reciprocal
transformations of 1+1-dimensional non-steady gasdynamics as derived in [18] were applied
to derive a new integrable-differential version of the affinsphären equation. The latter describes
the analogues of spheres in affine geometry (Jonas [22], Nomizu and Sasaki [23]). It represents
an alternative avatar of the classical Tzitzeica equation [24]. It has been established that the
affinsphären equation arises naturally out of a Lagrangian description of 1+1-dimensional
anisentropic gasdynamics for a privileged class of constitutive laws [25, 26]. Integrability is
preserved under the action of a reciprocal transformation as is supported by the construction
of a Lax pair for the resultant deformed affinsphären equation.

Here, infinitesimal versions of reciprocal-type invariance transformations in gasdynamics are
presented along with novel Lie group and nonlinear self-adjointness connections.

1. The Bateman-type reciprocal transformations

Here, we consider invariance under reciprocal-type transformations of the governing equations
of steady, two-dimensional, inviscid gasdynamics, namely

(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 = 0 ,

𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦) + 𝑝𝑥 = 0 , 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦) + 𝑝𝑦 = 0 , (1.1)

𝑢𝑠𝑥 + 𝑣𝑠𝑦 = 0

where
q = 𝑢e𝑥 + 𝑣e𝑦

is the gas velocity, while 𝑝, 𝜌 and 𝑠 denote, in turn, the gas pressure, gas density and specific
entropy. To the system (1.1) must be adjoined an appropriate equation of state

𝑝 = 𝑝(𝜌, 𝑠) ,
𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒
𝑠

> 0 (1.2)

The system (1.1) implies the pair of conservation laws

(𝜌𝑢𝑣)𝑥 + (𝑝 + 𝜌𝑣2)𝑦 = 0 ,

(𝑝 + 𝜌𝑢2)𝑥 + (𝜌𝑢𝑣)𝑦 = 0
(1.3)
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whence, new independent variables may be introduced according to

𝑑𝑥′ = 𝛽−1
1 [ (𝑝 + 𝛽2 + 𝜌𝑣2)𝑑𝑥− 𝜌𝑢𝑣𝑑𝑦 ] ,

𝑑𝑦′ = 𝛽−1
1 [−𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝛽2 + 𝜌𝑢2)𝑑𝑦 ]

2 (1.4)

subject to the requirement 0 < |𝐽(𝑥′, 𝑦′, 𝑥, 𝑦)| < ∞ so that

0 < |(𝑝 + 𝛽2)(𝑝 + 𝛽2 + 𝜌𝑞2)| < ∞ . (1.5)

It may be established that, the gasdynamic system (1.1) is invariant under the 4-parameter
class of reciprocal transformations [28]

𝑢′ =
𝛽1𝑢

𝑝 + 𝛽2

, 𝑣′ =
𝛽1𝑣

𝑝 + 𝛽2

,

𝑝′ = 𝛽4 −
𝛽2
1𝛽3

𝑝 + 𝛽2

, 𝜌′ =
𝛽3𝜌(𝑝 + 𝛽2)

𝑝 + 𝛽2 + 𝜌𝑞2
, 𝑠′ = Ψ(𝑠) .

(1.6)

This result has its roots in work of Bateman on lift and drag functions in planar irrotational
gasdynamics [1]. The subject was elaborated upon by Tsien [29]. Additional invariance
properties of reciprocal transformations concerning the equation of state, were investigated
in [30].

In more recent work, reciprocal transformations have been applied in [31] to uncover hidden
soliton-type integrability in subsonic gasdynamics and to isolate periodic vortex motions which
are reciprocally linked to hydrodynamic Stuart vortices [32]. In [33], reciprocal transformations
were combined with the double action of an auto-Bäcklund transformation on an integrable
elliptic Tzitzeica model in subsonic gasdynamics to isolate breather-type compressible vortex
motions of a generalized Kármán-Tsien gas. Doubly periodic motions valid for such a gas
were obtained via multi-parameter reciprocal transformations and the Hirota bilinear operator
formalism in [34]. In [35], reciprocal transformations were adduced in conjunction with the
action of an auto-Bäcklund transformation to isolate vortex train motions in super-Alfvénic
magnetogasdynamics.

2. Infinitesimal Bateman-type reciprocal transformations

It is observed that the one-parameter class of reciprocal relations (1.6) with

𝛽1 = 𝛽2 = 𝛽4 = 𝛽 , 𝛽3 = 1 (2.1)

reduces to the identity transformation in the limit 𝛽 → ∞. The reciprocally associated
gasdynamic flows may be regarded as a deformation of the original motions. Action of this class
on a seed hydrodynamic vortex street was used in [31] to construct a compressible, subsonic
version of the Stuart vortex street, valid for a generalised Kármán-Tsien model.

If one sets 𝜖 ≡ 𝛽−1 then the one-parameter class of reciprocal transformations becomes

𝑢′ =
𝑢

1 + 𝜖𝑝
, 𝑣′ =

𝑣

1 + 𝜖𝑝
,

𝑝′ =
𝑝

1 + 𝜖𝑝
, 𝜌′ =

𝜌(1 + 𝜖𝑝)

1 + 𝜖(𝑝 + 𝜌𝑞2)
, 𝑠′ = Ψ(𝑠)

(2.2)

together with
𝑑𝑥′ = 𝜖[ (𝑝 + 𝜌𝑣2)𝑑𝑥− 𝜌𝑢𝑣𝑑𝑦 ] + 𝑑𝑥 ,

𝑑𝑦′ = 𝜖[−𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑦 ] + 𝑑𝑦 .
(2.3)

2The reciprocal variables 𝑥′ and 𝑦′ are up to scaling, the drag and lift functions of Bateman [1]



ON INFINITESIMAL RECIPROCAL-TYPE TRANSFORMATIONS IN GASDYNAMICS. . . 199

On expansion and retention of terms, to 0(𝜖2) the relations (2.2) produce the class of
infinitesimal transformations

𝑢′ = 𝑢(1 − 𝜖𝑝) , 𝑣′ = 𝑣(1 − 𝜖𝑝) ,

𝑝′ = 𝑝(1 − 𝜖𝑝) , 𝜌′ = 𝜌(1 − 𝜖𝜌𝑞2) , 𝑠′ = Ψ(𝑠)
(2.4)

where 𝜖 is now deemed to be a small deformation parameter. It is readily shown, ab initio that
the gasdynamic system is invariant under this class of infinitesimal transformations augmented
by (2.3), up to the equation of state.

Thus, with regard to the continuity equations

−𝜌′𝑣′𝑑𝑥′ + 𝜌′𝑢′𝑑𝑦′ =

= −𝜌𝑣[ 1 − 𝜖(𝑝 + 𝜌𝑞2) + 0(𝜖2) ] · [ 𝜖( (𝑝 + 𝜌𝑣2)𝑑𝑥− 𝜌𝑢𝑣𝑑𝑦) + 𝑑𝑥 ]+

+ 𝜌𝑢[ 1 − 𝜖(𝑝 + 𝜌𝑞2) + 0(𝜖2) ] [ 𝜖(−𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑦) + 𝑑𝑦 ] =

= −𝜌𝑣𝑑𝑥 + 𝜌𝑢𝑑𝑦+

+ 𝜖[−𝜌𝑣( (𝑝 + 𝜌𝑣2)𝑑𝑥− 𝜌𝑢𝑣𝑑𝑦) + (𝑝 + 𝜌𝑞2)𝜌𝑣𝑑𝑥 ]+

+ 𝜖[ 𝜌𝑢(−𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑦)−
− 𝜖(𝑝 + 𝜌𝑞2)𝜌𝑢𝑑𝑦 ] + 0(𝜖2) =

= −𝜌𝑣𝑑𝑥 + 𝜌𝑢𝑑𝑦 + 0(𝜖2) . (2.5)

Moreover,

−(𝑝′ + 𝜌′𝑣′2)𝑑𝑥′ + 𝜌′𝑢′𝑣′𝑑𝑦′ =

= −[ 𝑝(1 − 𝜖𝑝) + 𝜌𝑣2(1 − 𝜖𝜌𝑞2 − 2𝜖𝑝) + 0(𝜖2) ]𝑑𝑥′+

+ 𝜌𝑢𝑣(1 − 𝜖𝜌𝑞2 − 2𝜖𝑝 + 0(𝜖2) )𝑑𝑦′ =

= −(𝑝 + 𝜌𝑣2)𝑑𝑥+

+ 𝜖[ 𝑝2 + 𝜌2𝑣2𝑞2 + 2𝜌𝑣2𝑝− (𝑝 + 𝜌𝑣2)2 ]𝑑𝑥+

+ 𝜖𝜌𝑢𝑣(𝑝 + 𝜌𝑣2)𝑑𝑦 + 𝜌𝑢𝑣𝑑𝑦 − 𝜖𝜌2𝑢2𝑣2𝑑𝑥+

+ 𝜖𝜌𝑢𝑣𝑑𝑦[−(𝜌𝑞2 + 2𝑝) + 𝑝 + 𝜌𝑢2 ] + 0(𝜖2) =

= −(𝑝 + 𝜌𝑣2)𝑑𝑥 + 𝜌𝑢𝑣𝑑𝑦 + 0(𝜖2) .

Similarly,

−𝜌′𝑢′𝑣′𝑑𝑥′ + (𝑝′ + 𝜌′𝑢′2)𝑑𝑦′ =

= −𝜌𝑢𝑣(1 − 𝜖(𝜌𝑞2 + 2𝑝) + 0(𝜖2) )𝑑𝑥′+

+ [ 𝑝(1 − 𝜖𝑝) + 𝜌𝑢2(1 − 𝜖(𝜌𝑞2 + 2𝑝) ] + 0(𝜖2)𝑑𝑦′ =

= −𝜌𝑢𝑣𝑑𝑥 + 𝜖𝜌𝑢𝑣(𝜌𝑞2 + 2𝑝)𝑑𝑥−
− 𝜌𝑢𝑣𝜖(𝑝 + 𝜌𝑣2)𝑑𝑥− 𝜖𝜌2𝑢2𝑣2𝑑𝑦+

+ (𝑝 + 𝜌𝑢2)𝑑𝑦 − 𝜖[ 𝑝2 + 𝜌𝑢2(𝜌𝑞2 + 2𝑝) ]𝑑𝑦−
− 𝜖𝜌𝑢𝑣(𝑝 + 𝜌𝑢2)𝑑𝑥 + 𝜖(𝑝 + 𝜌𝑢2)2𝑑𝑦 + 0(𝜖2) =

= −𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑦 + 0(𝜖2) .

Hence, to 0(𝜖2), the gasdynamic system determined by the conservation laws consisting of
the continuity equation augmented by the pair (1.3) is invariant under the class of infinitesimal
transformations (2.3)−(2.4).
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Further,

𝑑Ψ′ = −𝜌′𝑣′𝑑𝑥′ + 𝜌′𝑢′𝑑𝑦′ =

= −𝜌𝑣[ 1 − 𝜖(𝑝 + 𝜌𝑞2) + 0(𝜖2) ]𝑑𝑥′+

+ 𝜌𝑢[ 1 − 𝜖(𝑝 + 𝜌𝑞2) + 0(𝜖2) ]𝑑𝑦′ =

= −𝜌𝑣𝑑𝑥 + 𝜖[ 𝜌𝑣(𝑝 + 𝜌𝑞2) − (𝑝 + 𝜌𝑣2)𝜌𝑣 ]𝑑𝑥 + 𝜖𝜌𝑢𝑣2𝑑𝑦+

+ 𝜌𝑢𝑑𝑦 + 𝜖[−𝜌𝑢(𝑝 + 𝜌𝑞2) ]𝑑𝑦 − 𝜖𝜌2𝑢2𝑣𝑑𝑥+

+ 𝜖𝜌𝑢(𝑝 + 𝜌𝑢2)𝑑𝑦 + 0(𝜖2) =

= −𝜌𝑣𝑑𝑥 + 𝜌𝑢𝑑𝑦 + 0(𝜖2) =

= 𝑑Ψ + 0(𝜖2)

so that the isentropic condition (1.1)3 is also preserved under the class of infinitesimal
transformations.

3. Lie group connection. Reconstruction of the Bateman relations via
initial value problems

The class of reciprocal transformations (2.2) is readily reconstructed from (2.4) via the usual
Lie group procedure involving the solution of a system of initial value problems (see e.g. [36])
which, in this case yields

𝑑𝑝′

𝑑𝜖
= −𝑝′2 , 𝑝′|𝜖=0 = 𝑝 ,

𝑑𝑢′

𝑑𝜖
= −𝑢′𝑝′ , 𝑢′|𝜖=0 ,

𝑑𝑣′

𝑑𝜖
= −𝑣′𝑝′ , 𝑣′|𝜖=0 = 𝑣 ,

𝑑𝜌′

𝑑𝜖
= −𝜌′2𝑞′2 , 𝜌′|𝜖=0 = 𝜌 ,

(3.1)

together with
𝑑(𝑑𝑥′) = [ (𝑝 + 𝜌𝑣2)𝑑𝑥− 𝜌𝑢𝑣𝑑𝑦 ]𝑑𝜖 , 𝑑𝑥′|𝜖=0 = 𝑑𝑥 ,

𝑑(𝑑𝑦′) = [−𝜌𝑢𝑣𝑑𝑥 + (𝑝 + 𝜌𝑣2)𝑑𝑦 ]𝑑𝜖 , 𝑑𝑦′|𝜖=0 = 𝑑𝑦 .
(3.2)

Thus, solution of the initial value problem (3.1)1 yields the reciprocal pressure

𝑝′ =
𝑝

1 + 𝜖𝑝
,

while insertion, in turn of this relation into (3.1)2 produces

𝑑𝑢′

𝑑𝜖
= − 𝑢′𝑝

1 + 𝜖𝑝
,

whence, on integration and use of the initial condition 𝑢′|𝜖=0 = 𝑢 it is seen that

𝑢′ =
𝑢

1 + 𝜖𝑝

and, in a similar manner
𝑣′ =

𝑣

1 + 𝜖𝑝
.

Accordingly, (3.1)3 yields
𝑑𝜌′

𝑑𝜖
= − 𝜌′2𝑞2

(1 + 𝜖𝑝)2
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whence, on integration and use of the initial condition 𝜌′|𝜖=0 we retrieve the reciprocal density
relation

𝜌′ =
𝜌(1 + 𝜖𝑝)

1 + 𝜖(𝑝 + 𝜌𝑞2)
.

The reciprocal variable relations (2.3) are likewise retrieved via (3.2).
Thus, the one-parameter class (2.2) of Bateman-type reciprocal transformations is seen to

have Lie group origin. It is natural to investigate to what extent this class may be additional
boosted by more general Lie group action. In particular, Prim-type substitution invariance
principles of gasdynamics and magneto-gasdynamics [37, 38, 39] may be generated by Lie
group methods (see [40]−[42] and work cited therein). The imbedding of the one-parameter
class of one-parameter reciprocal transformations in a more general Lie-group investigation of
invariance of the gasdynamic system (1.1) will be investigated subsequently in Section 5.

It is remarked that, Lie group methods as described in the authoritative monograph
by Ovsiannikov [47] have extensive applications in hydrodynamics (Andreev et al [48]).
Importantly, such applications are not restricted to the construction of exact solutions. Thus, in
particular, key properties such as the time evolution of moments of inertia as described by Ball
[49, 50] may, in fact, be generated via Lie-group methods [51, 52]. Variants of such theorems may
be shown to be key to isolating hidden integrable Hamiltonian structure of Ermakov-Ray-Reid
type in rotating shallow water theory [53], gas cloud evolution [54] and magnetogasdynamics
[55].

4. Infinitesimal reciprocal transformations in non-steady gasdynamics

The governing equations of one-dimensional, anisentropic non-steady gasdynamics, neglecting
heat conduction and radiation are

𝜌𝑡 + (𝜌𝑢)𝑥 = 0 , 𝜌(𝑢𝑡 + 𝑢𝑢𝑥) + 𝑝𝑥 = 0 ,

𝑠𝑡 + 𝑢𝑠𝑥 = 0
(4.1)

together with a prevailing gas law of the type (1.2).
In [18] it was established that the gasdynamic system is invariant, up to the equation of

state, under the 4-parameter class of reciprocal transformations

𝑢′ =
𝛽1𝑢

𝑝 + 𝛽2

,

𝑝′ = 𝛽4 −
𝛽2
1𝛽3

𝑝 + 𝛽2

, 𝜌′ =
𝛽3𝜌(𝑝 + 𝛽2)

𝑝 + 𝛽2 + 𝜌𝑢2
,

𝑠′ = Ψ(𝑠) ,

𝑑𝑡′ = 𝛽−1
1 [−𝜌𝑢𝑑𝑥 + (𝑝 + 𝜌𝑢2 + 𝛽2)𝑑𝑡 ] , 𝑑𝑥′ = 𝑑𝑥 ,

0 < |𝑝 + 𝜌𝑢2 + 𝛽2| < ∞ .

(4.2)

The specialisation of the parameters 𝛽1 as in (2.1) with 𝜖 = 𝛽−1 leads to the one-parameter
subclass of invariant transformations

𝑢′ =
𝑢

1 + 𝜖𝑝
,

𝑝′ =
𝑝

1 + 𝜖𝑝
, 𝜌′ =

𝜌(1 + 𝜖𝑝)

1 + 𝜖(𝑝 + 𝜌𝑢2)

(4.3)

together with
𝑑𝑡′ = 𝜖[−𝜌𝑢𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑡 ] + 𝑑𝑡 , 𝑑𝑥′ = 𝑑𝑥 . (4.4)
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Expansion and retention of terms to 0(𝜖2) in (4.3) leads to the class of infinitesimal
transformations

𝑢′ = 𝑢(1 − 𝜖𝑝) , 𝜌′ = 𝜌(1 − 𝜖𝜌𝑢2) , 𝑝′ = 𝑝(1 − 𝜖𝑝) ,

𝑑𝑡′ = 𝜖[−𝜌𝑢𝑑𝑥 + (𝑝 + 𝜌𝑢2)𝑑𝑡 ] + 𝑑𝑡 , 𝑑𝑥′ = 𝑑𝑥
(4.5)

augmented by 𝑠′ = Ψ(𝑠). It is readily shown that the gasdynamic system (4.1) is invariant
to 0(𝜖2) under this class of infinitesimal transformations and that the original reciprocal
transformations (4.3) may be reconstructed via the solution of a system of initial value problems
analogous to that in (3.1).

5. Representation of reciprocal transformations as non-local symmetries

It has been shown in [43], using the transition from Lagrange to Euler coordinates in
gasdynamics, that the equations

𝑣𝑡 + 𝑣𝑣𝑥 +
1

𝜌
𝑝𝑥 = 0,

𝜌𝑡 + 𝑣𝜌𝑥 + 𝜌𝑣𝑥 = 0, (5.1)
𝑝𝑡 + 𝑣𝑝𝑥 − 𝑝𝑣𝑥 = 0

describing the Chaplygin gas have two nonlocal symmetries:

𝑋1 = 𝜎
𝜕

𝜕𝑥
− 𝜕

𝜕𝑝
+

𝜌

𝑝

𝜕

𝜕𝜌
,

𝑋2 =

(︂
𝑡2

2
+ 𝑠

)︂
𝜕

𝜕𝑥
+ 𝑡

𝜕

𝜕𝑣
− 𝜏

𝜕

𝜕𝑝
+

𝜌 𝜏

𝑝

𝜕

𝜕𝜌
,

(5.2)

where 𝜏, 𝑠, 𝜎 are non-local variables defined by the compatible over-determined systems

𝜏𝑥 = 𝜌, 𝜏𝑡 = −𝑣𝜌,

𝑠𝑥 = −𝜏

𝑝
, 𝑠𝑡 =

𝑣𝜏

𝑝
, (5.3)

𝜎𝑥 = −1

𝑝
, 𝜎𝑡 =

𝑣

𝑝
·

Equations (5.3) can be equivalently written as the following conservation laws:

𝐷𝑡(𝜌) + 𝐷𝑥(𝑣𝜌) = 0,

𝐷𝑡

(︂
𝜏

𝑝

)︂
+ 𝐷𝑥

(︂
𝑣𝜏

𝑝

)︂
= 0, (5.4)

𝐷𝑡

(︂
1

𝑝

)︂
+ 𝐷𝑥

(︂
𝑣

𝑝

)︂
= 0.

The second conservation equation (5.4) contains the non-local variable 𝜏 and therefore it is
termed a non-local conservation law. The first, second and third conservation equations (5.4)
provide the compatibility conditions for the over-determined equations (5.3) for the non-local
variables 𝜏, 𝑠 and 𝜎, respectively.

If we apply the same approach to the conservation laws (1.3),

(𝜌𝑢𝑣)𝑥 + (𝑝 + 𝜌𝑣2)𝑦 = 0,

(𝑝 + 𝜌𝑢2)𝑥 + (𝜌𝑢𝑣)𝑦 = 0,
(1.3)
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we arrive at the non-local variables 𝛼 and 𝜎 determined by the equations

𝛼𝑥 = 𝑝 + 𝜌𝑣2, 𝛼𝑦 = −𝜌𝑢𝑣 (5.5)

and
𝜎𝑥 = −𝜌𝑢𝑣, 𝜎𝑦 = 𝑝 + 𝜌𝑢2, (5.6)

respectively. Using these variables, we can replace the infinitesimal reciprocal transformations
(3.2)-(3.3) with the following non-local symmetry generator

𝑋 = 𝛼
𝜕

𝜕𝑥
+ 𝜎

𝜕

𝜕𝑦
− 𝑝2

𝜕

𝜕𝑝
− 𝑝𝑢

𝜕

𝜕𝑢
− 𝑝𝑣

𝜕

𝜕𝑣
− (𝑢2 + 𝑣2)𝜌2

𝜕

𝜕𝜌
· (5.7)

Let us verify that the operator (5.7) is admitted by the steady two-dimensional equations of
gasdynamics (1.1),

(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 = 0,

𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦) = 0,

𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦) = 0,

𝑢𝑠𝑥 + 𝑣𝑠𝑦 = 0,

(1.1)

with an arbitrary equation of state. The usual prolongation formula

𝜁𝑘𝑖 = 𝐷𝑖(𝜂
𝑘) − 𝑢𝑘

𝑗𝐷𝑖(𝜉
𝑗)

gives the following prolongation of the operator (5.7) to the derivatives involved in the equations
(1.1):

̃︀𝑋 = 𝑋+𝜁𝑝𝑥
𝜕

𝜕𝑝𝑥
+𝜁𝑝𝑦

𝜕

𝜕𝑝𝑦
+𝜁𝑢𝑥

𝜕

𝜕𝑢𝑥

+𝜁𝑢𝑦
𝜕

𝜕𝑢𝑦

+𝜁𝑣𝑥
𝜕

𝜕𝑣𝑥
+𝜁𝑣𝑦

𝜕

𝜕𝑣𝑦
+𝜁𝜌𝑥

𝜕

𝜕𝜌𝑥
+𝜁𝜌𝑦

𝜕

𝜕𝜌𝑦
+𝜁𝑠𝑥

𝜕

𝜕𝑠𝑥
+𝜁𝑠𝑦

𝜕

𝜕𝑠𝑦
, (5.8)

where
𝜁𝑝𝑥 = 𝜌𝑢𝑣𝑝𝑦 − (3𝑝 + 𝜌𝑣2)𝑝𝑥, 𝜁𝑝𝑦 = 𝜌𝑢𝑣𝑝𝑥 − (3𝑝 + 𝜌𝑢2)𝑝𝑦,

𝜁𝑢𝑥 = 𝜌𝑢𝑣𝑢𝑦 − (2𝑝 + 𝜌𝑣2)𝑢𝑥 − 𝑢𝑝𝑥, 𝜁𝑢𝑥 = 𝜌𝑢𝑣𝑢𝑥 − (2𝑝 + 𝜌𝑢2)𝑢𝑦 − 𝑢𝑝𝑦,

𝜁𝑣𝑥 = 𝜌𝑢𝑣𝑣𝑦 − (2𝑝 + 𝜌𝑣2)𝑣𝑥 − 𝑣𝑝𝑥, 𝜁𝑣𝑥 = 𝜌𝑢𝑣𝑣𝑥 − (2𝑝 + 𝜌𝑢2)𝑣𝑦 − 𝑣𝑝𝑦,

𝜁𝜌𝑥 = 𝜌𝑢𝑣𝜌𝑦 − (𝑝 + 2𝜌𝑢2 + 3𝜌𝑣2)𝜌𝑥 − 2𝜌2(𝑢𝑢𝑥 + 𝑣𝑣𝑥),

𝜁𝜌𝑦 = 𝜌𝑢𝑣𝜌𝑥 − (𝑝 + 2𝜌𝑣2 + 3𝜌𝑢2)𝜌𝑦 − 2𝜌2(𝑢𝑢𝑦 + 𝑣𝑣𝑦),

𝜁𝑠𝑥 = 𝜌𝑢𝑣𝑠𝑦 − (𝑝 + 𝜌𝑣2)𝑠𝑥, 𝜁𝑠𝑦 = 𝜌𝑢𝑣𝑠𝑥 − (𝑝 + 𝜌𝑢2)𝑠𝑦.

(5.9)

The calculation shows that̃︀𝑋[(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦] = − 2[𝑝 + 𝜌(𝑢2 + 𝑣2)][(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦]−
− 𝜌𝑢[𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦)] − 𝜌𝑣[𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦)],̃︀𝑋[𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦)] = − [3𝑝 + 𝜌(𝑢2 + 𝑣2)][𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦)],̃︀𝑋[𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦)] = − [3𝑝 + 𝜌(𝑢2 + 𝑣2)][𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦))].

(5.10)

Hence, the infinitesimal test for the invariance of Equations (1.1) is satisfied.
We will use the non-local symmetry (5.7) for constructing a conservation law by the method

of nonlinear self-adjointness [44] (see also [45]). According to this method, we take the formal
Lagrangian of Equations (1.1) in the form

ℒ = 𝑅(𝜌𝑢𝑥 + 𝜌𝑣𝑦 + 𝑢𝜌𝑥 + 𝑣𝜌𝑦) + 𝑆(𝑢𝑠𝑥 + 𝑣𝑠𝑦)+

+ 𝑈 [𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦)] + 𝑉 [𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦)]
(5.11)
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and write the adjoint system

𝛿ℒ
𝛿𝑢

= 0,
𝛿ℒ
𝛿𝑣

= 0,
𝛿ℒ
𝛿𝑝

= 0,
𝛿ℒ
𝛿𝜌

= 0,
𝛿ℒ
𝛿𝑠

= 0, (5.12)

to Equations (1.1), where 𝛿ℒ/𝛿𝑢 is the variational derivative of the formal Lagrangian with
respect to the dependent variable 𝑢, etc.

The nonlinear self-adjointness implies that the adjoint equations (5.12) are satisfied for all
solutions of the system (1.1). In our case this property follows, e.g. from the conservation form of
the first equation of the system (1.1). Namely, it is well known that if a function of independent
and dependent variables together with partial derivatives of any order has a divergence form,
then the variational derivatives of this function vanish (see, e.g. [46]). Using this statement and
noting that the expression

𝜌𝑢𝑥 + 𝜌𝑣𝑦 + 𝑢𝜌𝑥 + 𝑣𝜌𝑦

has a divergence form,

𝜌𝑢𝑥 + 𝜌𝑣𝑦 + 𝑢𝜌𝑥 + 𝑣𝜌𝑦 = 𝐷𝑥(𝜌𝑢) + 𝐷𝑦(𝜌𝑣),

we see that the formal Lagrangian (5.11) with

𝑅 = 1, 𝑈 = 𝑉 = 𝑆 = 0 (5.13)

solves the equations (5.12).
Now we apply to the non-local symmetry (5.7) the general formula from [45]) for constructing

conserved vectors associated with symmetries and obtain

𝐶1 = −𝑊 1 𝜕ℒ
𝜕𝑢𝑥

−𝑊 2 𝜕ℒ
𝜕𝑣𝑥

−𝑊 3 𝜕ℒ
𝜕𝑝𝑥

−𝑊 4 𝜕ℒ
𝜕𝜌𝑥

−𝑊 5 𝜕ℒ
𝜕𝑠𝑥

,

𝐶2 = −𝑊 1 𝜕ℒ
𝜕𝑢𝑦

−𝑊 2 𝜕ℒ
𝜕𝑣𝑦

−𝑊 3 𝜕ℒ
𝜕𝑝𝑦

−𝑊 4 𝜕ℒ
𝜕𝜌𝑦

−𝑊 5 𝜕ℒ
𝜕𝑠𝑦

,

(5.14)

where
𝑊 1 = −𝑝𝑢− 𝛼𝑢𝑥 − 𝜎𝑢𝑦, 𝑊 2 = −𝑝𝑣 − 𝛼𝑣𝑥 − 𝜎𝑣𝑦,

𝑊 3 = −𝑝2 − 𝛼𝑝𝑥 − 𝜎𝑝𝑦, 𝑊 4 = −(𝑢2 + 𝑣2)𝜌2 − 𝛼𝜌𝑥 − 𝜎𝜌𝑦,

𝑊 5 = −𝛼𝑠𝑥 − 𝜎𝑠𝑦.

(5.15)

Inserting in (5.14) the expressions (5.15) for 𝑊 1, . . .𝑊 5 and invoking Equations (5.13) we
obtain the following non-local conserved vector :

𝐶1 = 𝜌𝑝𝑢 + 𝑢(𝑢2 + 𝑣2)𝜌2 + 𝛼(𝜌𝑢)𝑥 + 𝜎(𝜌𝑢)𝑦,

𝐶2 = 𝜌𝑝𝑣 + 𝑣(𝑢2 + 𝑣2)𝜌2 + 𝛼(𝜌𝑣)𝑥 + 𝜎(𝜌𝑣)𝑦.
(5.16)

The vector (5.16) satisfies the conservation law in the following form:

𝐷𝑥(𝐶1) + 𝐷𝑦(𝐶
2) = 2[𝑝 + 𝜌(𝑢2 + 𝑣2)][(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦] + 𝜌𝑢[𝑝𝑥 + 𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦)]+

+ 𝜌𝑣[𝑝𝑦 + 𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦)] + 𝛼[(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦]𝑥 + 𝜎[(𝜌𝑢)𝑥 + (𝜌𝑣)𝑦]𝑦.
(5.17)

A BIOGRAPHICAL NOTE

H. Bateman FRS was educated at Trinity College, Cambridge University and was Senior
Wrangler in the Mathematical Tripos of 1903. He was elected to the Royal Society of London
in 1928 and to the National Academy of Science (USA) in 1930.
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