УДК 517.9

НОВЫЕ РЕШЕНИЯ УРАВНЕНИЯ ЯНГА-БАКСТЕРА С КВАДРАТОМ

Р.А. АТНАГУЛОВА, И.З. ГОЛУБЧИК

Аннотация. Работа посвящена уравнению Янга- Бакстера с квадратом, то есть уравнению

$$R([R(a), b] - [R(b), a]) = R^{2}([a, b]) + [R(a), R(b)],$$

где $a,b \in g, g$ — алгебра Ли и R — линейный оператор на пространстве g. Строятся две новых серии операторов R, удовлетворяющих этому уравнению. Для их построения используются подалгебры Ли в алгебре матриц, дополнительные к подпространству матриц с нулевой последней строкой.

Ключевые слова: уравнение Янга-Бакстера, интегрируемые дифференциальные уравнения, дополнительные подалгебры в алгебре рядов Лорана.

1. Введение

Основным вопросом, изучаемым в этой статье, является уравнение Янга-Бакстера с квадратом

$$R([R(a), b] - [R(b), a]) = R^{2}([a, b]) + [R(a), R(b)], \tag{1}$$

где $a, b \in g, g$ — алгебра Ли и R — линейный оператор на пространстве g. Уравнение (1) играет важную роль в теории интегрируемых систем [1–4]. Главная цель настоящей статьи — построить новые серии решений уравнения Янга-Бакстера с квадратом (1).

В §3 будут построены два примера подалгебр Ли в алгебре матриц, дополнительных к подпространству матриц с нулевой последней строкой. Затем в §4 с использованием подалгебр из §3 строятся две серии решений уравнения Янга-Бакстера. Серия 2 опирается на метод, основанный на предложении 3 из работы [1]. Эта серия решений уравнения (1) связана с 3-градуированными алгебрами Ли. Серия 1 является принципиально новой. Соответствующая конструкция опирается на теорему 1 из §2.

2. Однородные дополнительные подалгебры в алгебре многочленов над матрицами

В настоящей работе уравнение (1) исследуется в предположении, что g — алгебра Ли матриц вида $g = C_m \oplus \ldots \oplus C_m$, являющаяся прямой суммой нескольких экземпляров алгебры Ли C_m . Алгебра Ли матриц g является прямой суммой алгебр Ли матриц $m \times m$ над полем C. Введем следующие определения:

- 1) подалгебру g_+ алгебры g назовем ∂u агональной, если она состоит из всех элементов вида $\{(a,a,\ldots,a)|a\in C_m\};$
- 2) подалгебру g_- алгебры g назовем $donoлнительной <math>\kappa$ g_+ , если прямая сумма подпространств g_- и g_+ совпадает с алгеброй Ли g или, другими словами, выполнены следующие 2 условия:

$$g_+ \oplus g_- = g, \qquad g_+ \cap g_- = \{0\};$$

R.A. Atnagulova, I.Z. Golubchik, New solutions of the Yang-Baxter Equation with a square.

[©] Атнагулова Р.А., Голувчик И.З. 2012.

Поступила 19 декабря 2011 г.

3) подалгебру h в алгебре многочленов $C_m[x]$ назовем однородной, если подалгебра удовлетворяет условию $xh \subset h$.

Определим оператор $R:C_m \to C_m$ формулой

$$(\alpha_1 p, \alpha_2 p, \dots, \alpha_m p)_+ = -(R(p), \dots, R(p)). \tag{2}$$

Здесь

$$q = (p, p, \dots, p) \in g_+, \qquad \lambda = (\alpha_1, \dots, \alpha_m),$$

где α_i — различны, а через $(\lambda q)_+$ обозначена проекция элемента λq на q_+ параллельно q_- .

Теорема 1. Пусть g_+ — диагональная подалгебра алгебры g, g_- — однородная подалгебра, дополнительная κg_+ . Тогда оператор R, задаваемый формулой (2) удовлетворяет уравнению (1) на g_+ .

Доказательство. Рассмотрим алгебру Ли $C_m[x]$ многочленов вида $\sum a_i x^i$, где коэффициенты a_i принадлежат кольцу комплексных матриц размером $m \times m$, x — скалярная переменная.

Пусть φ — линейный оператор, действующий из $C_m[x]$ в прямую сумму k экземпляров алгебры C_m по формуле

$$\varphi(\sum(a_i x^i) = \sum_i \lambda^i(a_i, \dots, a_i) = \sum_i (\alpha_1^i a_i, \alpha_2^i a_i, \dots, \alpha_m^i a_i).$$
 (3)

Легко проверить, что φ — гомоморфизм алгебр Ли, то есть сохраняет коммутатор. Полный прообраз $\varphi^{-1}(g_-) = G_-$ подалгебры g_- при гомоморфизме φ является подалгеброй алгебры $C_m[x]$. Через G_+ обозначим подалгебру в $C_m[x]$, образуемую многочленами, независящими от x.

Докажем, что выполнены следующие три условия, аналогичные условиям для алгебры Ли g теоремы 1:

a)
$$xG_{-} \subseteq G_{-}$$
; b) $G_{+} + G_{-} = C_{m}[x]$; c) $G_{+} \cap G_{-} = \{0\}$.

Включение $xG_{-}\subseteq G_{-}$ — верно, т.к. по условию теоремы 1 $\lambda g_{-}\subseteq g_{-}$ и $\varphi^{-1}(\lambda g_{-})=xG_{-}\subseteq G_{-}$.

Пусть a = b + c, $b \in G_+$, $c \in G_-$. Тогда $\varphi(a) = \varphi(b) + \varphi(c)$, где $\varphi(b) \in g_+$, $\varphi(c) \in g_-$. Таким образом, $\varphi(G_+ + G_-) = g_+ + g_- = C_m[x]$. Следовательно, $G_+ + G_- + Ker\varphi = C_m[x]$. Так как $Ker\varphi \subseteq G_-$, то $G_+ + G_- = C_m[x]$. Итак, условие b) также выполнено.

Далее, пусть a принадлежит $G_+ \cap G_-$. Тогда $\varphi(a) \in g_+ \cap g_- = 0$, т.е. $Ker \varphi \in G_-$. Значит $a \in Ker \varphi \cap G_+ = 0$. Следовательно, $\varphi(a) = (a, \ldots, a) = 0$ и условие с) выполнено.

Для того чтобы R удовлетворяло уравнению (1), достаточно доказать, что G_- представимо в виде

$$G_{-} = \sum_{i} x^{i} (x a_{i} + R(a_{i})). \tag{4}$$

Так как по определению (3) функции φ имеем

$$\varphi(xp + R(p)) = \lambda(p, p, \dots, p) + (R(p), R(p), \dots, R(p)) \in g_{-},$$

то $xp+R(p)\in G_-$. Обозначим через $G^-=\sum_i x^i(xa_i+R(a_i))$. Из условия $\lambda g_-\subseteq g_-$ следует, что $x^i(xa_i+R(a_i))\subseteq G_-$. Получаем, что $G^-\subseteq G_-$, $G^-+G_+=C_m[x]$, и так как $G_-\cap G_+=\{0\}$, то $G_-\subseteq G^-$. Значит, $G^-=G_-$, и равенство (4) доказано. Выведем уравнение для оператора R. Для этого рассмотрим коммутатор

$$[xa + R(a), xb + R(b)] \in G_{-}.$$

Обозначим через d = [a, b], тогда [xa + R(a), xb + R(b)] = x(xd + R(d)) + x(c) + R(c),

$$x^{2}[a,b] + x[a,R(b)] + x[R(a),b] + [R(a),R(b)] = x(xd+R(d)) + x(c) + R(c).$$

Приравнивая коэффициенты при одинаковых степенях x в левой и правой частях последнего равенства, получим соотношения

$$[a, R(b)] + [R(a), b] = R(d) + c,$$
 $R(c) = [R(a), R(b)],$

$$c = [a, R(b)] + [R(a), b] - R(d),$$
 $R(c) = R([a, R(b)] + [R(a), b] - R(d)).$

Отсюда следует, что $R([R(a),b]-[R(b),a])=R^2([a,b])+[R(a),R(b)]$. Теорема 1 доказана. В работе [1] показано также, что справедлива

Теорема 2. Пусть оператор $R: G \to G$ диагонализуем, $\lambda_1, \ldots, \lambda_k$ — его спектр u G_i — соответствующие собственные подпространства. Тогда R удовлетворяет уравнению (1), если u только если подпространства G_i u $G_i + G_j$ являются подалгебрами Ли в G для всех различных i u j om 1 до k.

3. ФРОБЕНИУСОВЫ ПОДПРОСТРАНСТВА

Определение 1. Подпространство в пространстве матриц $C_{n\times n}$ назовем фробениусовым подпространством, если всё пространство матриц является прямой суммой этого подпространства и пространства матриц с нулевой последней строкой.

Для построения серии примеров операторов R, удовлетворяющих уравнению Янга-Бакстера с квадратом, в работе будут рассмотрены фробениусовы подпространства, являющиеся подалгебрами Ли.

Пример 1. Рассмотрим блочные матрицы вида

$$h = \left\{ \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_{1}} \end{pmatrix} \quad \begin{array}{c} 0 & 0 \\ & & \\ & & \\ 0 & & & \\ & & 0 & \\ & & & \\ & & & \\ \end{pmatrix} \mid \lambda_{s}, \mu_{s} \in C \right\}.$$
 (5)

Эти матрицы состоят из блоков размера $m_i \times m_j$, где $i = \{1, 2, 3\}, j = \{1, 2, 3\}$, индекс $s \in \{1, \ldots, m_1\}$, $m_3 = 1$, $m = m_1 + m_2 + m_3$). Матрицы D_s в формуле (5) — фиксированные диагональные матрицы размера $m_2 \times m_2$, λ_s , μ_t — произвольные параметры. При этом параметры λ_s в блоке (2,2) те же, что в блоке (1, 1).

Покажем, что множество H таких матриц h образуют алгебру Ли. Действительно, для коммутатора блочных матриц справедливы равенства

$$\begin{bmatrix}
\begin{pmatrix}
\lambda_{1} & 0 & \dots & 0 \\
0 & \lambda_{2} & \dots & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & \lambda_{m_{1}}
\end{pmatrix} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda_{m_{1}}
\end{pmatrix}, \begin{pmatrix}
\begin{pmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
0 & \lambda'_{2} & \dots & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{pmatrix} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{pmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
0 & \lambda'_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{pmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
\vdots & \lambda'_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
\vdots & \lambda'_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
\vdots & \lambda'_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
\vdots & \lambda'_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \ddots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \vdots & \ddots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \ddots & \ddots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \ddots & \ddots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \lambda'_{1} & 0 & \dots & \lambda'_{m_{1}}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & \lambda'_{1} & 0 & \dots & \lambda'_{m_{1}} \\
\vdots & \lambda'_{1} & \lambda'_{1} & \lambda'_{1} & \lambda'_{1}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & \lambda'_{1} & \lambda'_{1} & \lambda'_{1} \\
\vdots & \lambda'_{1} & \lambda'_{1} & \lambda'_{1}
\end{bmatrix} = \begin{bmatrix}
\lambda'_{1} & \lambda'_{1} & \lambda'_{1} & \lambda'_{1} \\$$

$$= \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_{m_2} \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ 0 & \lambda'_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} - \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ 0 & \lambda'_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} - \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ 0 & \lambda'_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} - \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} - \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ \vdots & \lambda'_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix} - \begin{pmatrix} \lambda'_1 & 0 & \dots & 0 \\ \vdots & \lambda'_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda'_{m_1} \end{pmatrix}$$

$$-\left(\begin{pmatrix} \lambda_1' & 0 & \dots & 0 \\ 0 & \lambda_2' & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \end{pmatrix} \begin{array}{c} 0 & 0 \\ 0 & \lambda_2' & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \end{pmatrix} \times \left(\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} \begin{array}{c} 0 & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} = \left(\begin{pmatrix} \lambda_1 \lambda_1' & 0 & \dots & 0 \\ 0 & \lambda_2 \lambda_2' & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \lambda_{m_1}' \end{pmatrix} \begin{array}{c} 0 & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \lambda_{m_1}' \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1}' \lambda_{m_1} \end{pmatrix} - \left(\begin{pmatrix} \lambda_1' \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2' \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 &$$

Поэтому такой коммутатор есть матрица вида (5) с $\lambda_i=0$, получаем, что H есть алгебра Ли.

Рассмотрим матрицу

$$T = \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ 1 \dots 1 & 0 & 1 \end{pmatrix},$$

где E_{m_i} — единичная матрица размера $m_i \times m_i$. Легко видеть, что обратная к ней задается формулой

$$T^{-1} = \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ -1 \dots -1 & 0 & 1 \end{pmatrix}.$$

Поскольку H является подалгеброй Ли, подпространство THT^{-1} — также подалгебра Ли.

Предложение 1. Подпространство THT^{-1} является фробениусовым (см. определение 1).

Доказательство:

Справедливы соотношения

$$ThT^{-1} = \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ 1 \dots 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 \\ & & 0 & & & \sum \lambda_s D_s & 0 \\ & & 0 & & & \mu_1 \dots \mu_{m_2} & \mu_m \end{pmatrix} \times$$

$$\times \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ -1 \dots -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} \times \begin{pmatrix} \sum_{m_1, \dots, m_1, \dots, m_1 \end{pmatrix}$$

$$\times \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ 1 \dots 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} .$$

$$\begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 \\ \lambda_1 - \mu_m \dots \lambda_{m_1} - \mu_m & \mu_1 \dots \mu_{m_2} & \mu_m \end{pmatrix} .$$
(6)

Обозначим через I пространство матриц с нулевой последней строкой, т.е. пространство матриц вида

$$I = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 0 \end{pmatrix}.$$

Пусть $q \in I \cap h$. Нужно показать, что q = 0. Из соотношения (6) следуют равенства $\mu_n = 0$, $\lambda_j - \mu_n = 0$ ($j = \overline{1,k}$). Поскольку $THT^{-1} \cap I = 0$, то сумма размерностей пространств ThT^{-1} и I равна n^2 , так как ThT^{-1} содержит n параметров, и размерность I равна $n^2 - n$. Размерность этой суммы пространств $dim(ThT^{-1} + I)$ совпадает с размерностью пространства комплексных матриц $n \times n$. Значит эти пространства ThT^{-1} и I являются дополнительными подпространствами к друг другу. Таким образом, ThT^{-1} есть фробениусово подпространство, являющееся подалгеброй Ли. Лемма доказана.

Пример 2. Рассмотрим блочные матрицы вида

$$h = \left\{ \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ 0 & 0 & \sum \lambda_s A_s & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \mu_1 \dots \mu_{m_2} & \mu_{m_2+1} \dots \mu_{m_3+m_2} & \mu_m \end{pmatrix} \right\}$$
(7)

 $\lambda_i, \mu_i \in C$ }. Эти матрицы состоят из блоков размера $m_i \times m_j$ где $i = \{1, 2, 3, 4\}, j = \{1, 2, 3, 4\},$ индекс $s \in \{1, \ldots, m_1\}, \ m_4 = 1, \ m = m_1 + m_2 + m_3 + m_4$). Матрицы A_i в формуле (7) — постоянные матрицы, которые необязательно диагональны, λ_s, μ_t — произвольные параметры. При этом параметры λ_s в блоке (2,3) те же, что в блоке (1, 1).

Вычисления, аналогичные проделанным в примере 1, показывают, что

$$\begin{bmatrix}
\begin{pmatrix}
\lambda_1 & 0 & \dots & 0 \\
0 & \lambda_2 & \dots & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & \lambda_{m_1}
\end{pmatrix} & 0 & 0 & 0 \\
0 & 0 & \sum \lambda_s A_s & 0 \\
0 & 0 & \sum \lambda_s A_s & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},$$

$$\begin{pmatrix}
\lambda'_{1} & 0 & \dots & 0 \\
0 & \lambda'_{2} & \dots & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & \lambda'_{m_{1}}
\end{pmatrix} \qquad 0 \qquad 0 \qquad 0 \\
0 & \dots & \lambda'_{m_{1}}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & \sum_{1} \lambda'_{1} A'_{1} & 0 \\
0 & 0 & \sum_{1} \lambda'_{1} A'_{1} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & \mu'_{1} \dots \mu'_{m_{2}} & \mu'_{m_{2}+1} \dots \mu'_{m_{3}+m_{2}} & \mu'_{m}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \mu''_{1} \dots \mu''_{m_{2}} & \mu''_{m_{2}+1} \dots \mu''_{m_{2}+m_{3}}) & \mu''_{m}
\end{pmatrix}.$$

Последняя матрица есть матрица вида (7) с $\lambda_i=0$, т.е. множество H матриц вида (7) образует алгебру Ли.

Далее рассмотрим матрицу

$$T = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ 1 \dots 1 & 0 & 0 & 1 \end{pmatrix}.$$

Обратная к ней задается формулой

$$T^{-1} = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots -1 & 0 & 0 & 1 \end{pmatrix}.$$

Докажем, что подалгебра Ли THT^{-1} является фробениусовым подпространством. Справедливы тождества

$$ThT^{-1} = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ 1 \dots 1 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ \dots & 0 & 0 & \sum \lambda_s A_s & 0 \\ \dots & 0 & 0 & 0 & 0 \\ \dots & 0 & \mu_1 \dots \mu_{m_2} & \mu_{m_2+1} \dots \mu_{m_3+m_2} & \mu_m \end{pmatrix} \times \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots - 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & \sum \lambda_s A_s & 0 \\ 0 & 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots - 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots - 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots - 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} E_{m_1} & 0 & 0 & 0 \\ 0 & E_{m_2} & 0 & 0 \\ 0 & 0 & E_{m_3} & 0 \\ -1 \dots - 1 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ 0 & 0 & \dots & \lambda_{m_1} \end{pmatrix} & 0 & 0 & 0 \\ 0 & 0 & \sum_{1} \lambda_s A_s & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \lambda_1 - \mu_m \dots \lambda_{m_1} - \mu_m & \mu_1 \dots \mu_{m_2} & \mu_{m_2+1} \dots \mu_{m_3+m_2} & \mu_m \end{pmatrix} . \tag{8}$$

Обозначим через I— пространство матриц с нулевой последней строкой:

$$I = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Пусть $q \in I \cap h$. Тогда q = 0. Действительно из (8) следует, что справедливы следующие равенства: $\mu_n = 0$, $\lambda_j - \mu_n = 0$ ($j = \overline{1,k}$). Поскольку $THT^{-1} \cap I = 0$, то сумма размерностей THT^{-1} и I равна n^2 , т.к. $dim(ThT^{-1}) = n$ и $dimI = n^2 - n$. Размерность этой суммы пространств $dim(ThT^{-1}+I)$ совпадает с размерностью пространства комплексных матриц $n \times n$. Значит эти пространства ThT^{-1} и I являются дополнительными подпространствами к друг другу. Таким образом, ThT^{-1} есть фробениусово подпространство, являющееся подалгеброй Ли.

4. СЕРИИ РЕШЕНИЙ УРАВНЕНИЙ ЯНГА-БАКСТЕРА С КВАДРАТОМ

На основе примеров предыдущего параграфа построим две серии решений уравнения Янга-Бакстера с квадратом (1).

4.1. Серия 1. Рассмотрим кольцо $m \times m$ матриц C_m над полем комплексных чисел. Элементы этого кольца будем записывать в виде блочных матриц с блоками, образуемыми матрицами размера $m_i \times m_j$ $(i = \{1, 2, 3\}, j = \{1, 2, 3\})$, где сумма $m_1 + m_2 + m_3 = m$.

Пусть H_1 , H_2 , H_3 — подалгебры Ли в алгебрах матриц C_{m_1} , C_{m_2} , C_{m_3} соответственно и H_i — фробениусовы подпространства в этих алгебрах матриц (см. определение 1). Обозначим через

$$L_1 = \begin{pmatrix} H_1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}, \qquad L_2 = \begin{pmatrix} * & 0 & * \\ * & H_2 & * \\ * & 0 & * \end{pmatrix}, \qquad L_3 = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & H_3 \end{pmatrix}$$

множества матриц, звездочками обозначены произвольные блочные матрицы соответствующих размеров. Ясно, что L_i — подалгебры Ли в матрицах C_m и $L=L_1+L_2+L_3=C_m$. Заметим, что

$$L_1 \cap L_2 \cap L_3 = \begin{pmatrix} H_1 & 0 & 0 \\ 0 & H_2 & 0 \\ 0 & 0 & H_3 \end{pmatrix}.$$

Обозначим L_4' — пространство матриц в G с нулевой последней строкой,

$$L_4 = T^{-1}L_4'T, \quad T = \begin{pmatrix} E_{m_1} & 0 & 0\\ 0 & E_{m_2} & 0\\ 0 \dots 0 & 0 & E_{m_3} \end{pmatrix}.$$

Тогда L_4 —подалгебра Ли.

Предложение 2. Пересечение пространств L_i нулевое:

$$L_1 \cap L_2 \cap L_3 \cap L_4 = \{0\}. \tag{9}$$

Доказательство. Имеем

$$T \begin{pmatrix} H_1 & 0 & 0 \\ 0 & H_2 & 0 \\ 0 & 0 & H_3 \end{pmatrix} T^{-1} \cap L_4' = \{0\},$$

$$T^{-1} = \begin{pmatrix} E_{m_1} & 0 & 0 \\ 0 & E_{m_2} & 0 \\ 0 \dots 0 & 0 & E_{m_3} \end{pmatrix}.$$

При $q_i \in H_i$ справедливо равенство

$$\begin{pmatrix}
E_{m_1} & 0 & 0 \\
0 & E_{m_2} & 0 \\
0 & \dots & 0
\end{pmatrix} \begin{pmatrix}
q_1 & 0 & 0 \\
0 & q_2 & 0 \\
0 & 0 & q_3
\end{pmatrix} =$$

$$= \begin{pmatrix}
q_1 & 0 & 0 \\
0 & q_2 & 0 \\
0 & \dots & 0
\end{pmatrix};$$

$$= \begin{pmatrix}
q_1 & 0 & 0 \\
0 & q_2 & 0 \\
0 & \dots & 0
\end{pmatrix};$$

$$\begin{pmatrix}
q_1 & 0 & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_1 & \begin{pmatrix}
0 & \dots & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_2 & q_3
\end{pmatrix};$$

$$\begin{pmatrix}
q_1 & 0 & 0 \\
0 & q_2 & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_1 & \begin{pmatrix}
0 & \dots & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_2 & q_3
\end{pmatrix} \cdot \begin{pmatrix}
E_{m_1} & 0 & 0 \\
0 & E_{m_2} & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} =$$

$$= \begin{pmatrix}
q_1 & 0 & 0 \\
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_1 + \begin{pmatrix}
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_3 & \begin{pmatrix}
0 & \dots & 0 \\
0 & \dots & 1
\end{pmatrix} q_2 + \begin{pmatrix}
0 & \dots & 0 \\
0 & \dots & -1
\end{pmatrix} q_3 & q_3
\end{pmatrix}. \tag{10}$$

Тем самым, если

$$q \in T \begin{pmatrix} H_1 & 0 & 0 \\ 0 & H_2 & 0 \\ 0 & 0 & H_3 \end{pmatrix} T^{-1} \cap L_4',$$

то последняя строка матрицы q нулевая.

Из равенства (10) следует, что последние строки из элементов q_1, q_2, q_3 , лежащих в алгебрах H_1, H_2, H_3 , — нулевые. Поскольку подалгебры H_i — фробениусовы, то и сами элементы q_i — нулевые. Тем самым, нулевым является и искомое пересечение (9).

Далее воспользуемся результатами теоремы 1.

Предложение 3. Пусть

$$g = C_m \oplus \ldots \oplus C_m;$$
 $g_+ = \{(a, a, \ldots, a) | a \in C_m\};$ $g_- = (L_1, L_2, L_3, L_4).$

Тогда оператор, задаваемый формулой (2), удовлетворяет уравнению Янга- Бакстера с квадратом (1) на g_+ .

Доказательство. Проверим, что g_- — однородная подалгебра, дополнительная к g_+ . L_i — подалгебры Ли. Выполнение условия $g_+ \cap g_- = \{0\}$ вытекает из того, что, согласно предложению $2, L_1 \cap L_2 \cap L_3 \cap L_4 = \{0\}$.

Если $(a, a, ..., a) \in (L_1, L_2, L_3, L_4)$, то $a \in L_1 \cap L_2 \cap L_3 \cap L_4 = \{0\}$. Поэтому выполнение условия однородности $xh \subset h$ $(h \in C_m[x])$ для g_- вытекает из того, что $\alpha_i L_i \subseteq L_i$

 $(L_i$ —подпространство). Осталось проверить выполнение условия $g_+ \oplus g_- = g$. Достаточно показать, что размерности пространств $g_- + g_+$ и g совпадают. Справедливы равенства $dimg = 4m^2$, $dimg_+ = m^2$,

$$dimg_{-} = dimL_{1} + dimL_{2} + dimL_{3} + dimL_{4}$$

$$(m_{2} + m_{3})m + m_{1} = dimL_{1},$$

$$dimL_{2} = (m_{1} + m_{3})m + m_{2},$$

$$dimL_{3} = (m_{1} + m_{2})m + m_{3},$$

$$dimL_{4} = m^{2} - m.$$

$$dim g_- = m(m_2 + m_3 + m_1 + m_3 + m_1 + m_2) + m_1 + m_2 + m_3 + m^2 - m = |m_1 + m_2 + m_3 = m| = 2m^2 + m + m^2 - m = 3m^2.$$

Справедливо равенство

$$dim g_+ + dim g_- = dim(g_+ + g_-),$$

так как пересечение $g_+ \cap g_- = \{0\}$. Поэтому

$$dim g = dim(g_{+} + g_{-}) = 4m^{2}$$
.

Значит условие $g_+ \oplus g_- = g$ выполнено. По теореме 1 оператор R(q), заданный формулой (2), удовлетворяет уравнению Янга-Банкстера с квадратом (1).

Замечание 1. Серия 1 получается из предложений 2 и 3 в том случае, если H_1, H_2, H_3 — блочные матрицы вида (5) и (7) соответственно.

Замечание 2. Все выше изложенное в серии 1 остается справедливым, если блоков k, а подалгебры Ли H_1, \ldots, H_k , которые лежат в алгебрах матриц C_{m_1}, \ldots, C_{m_k} , являются фробениусовыми подространствами в этих алгебрах матриц.

4.2. Серия 2. В работе [1] содержатся следующие предложения.

Предложение 4. Пусть G — произвольная 3-градуированная алгебра Л u, p_1 — подалгебра Л u в g_0 и e — элемент из g_1 , такие что $dimp_1 = dimg_1$ и $[p_1, e] = g_1$. Тогда $p_2 = exp(ad_e)(p_1 \oplus g_{-1})$ является дополнительной подалгеброй κ g_0 .

Предложение 5. Пусть $R: G \longrightarrow G$ диагонализуем, $\lambda_1, \ldots, \lambda_k$ —его спектр и G_i —соответствующие собственные подпространства. Тогда R удовлетворяет уравнению Янга- Бакстера c квадратом (1), если и только если подпространства G_i и $G_i + G_j$ являются подалгебрами Ли в G для всех различных i и j от 1 до k.

Нам также понадобится следующее замечание, сделанное в работе [1].

Замечание 3. Предложение 4 позволяет построить k-параметрическое семейство решений $R = \sum_{i=1}^k \lambda_i \prod_i$ (где \prod_i — проектор на G_i) уравнения (1), если известно разложение алгебры Ли G в прямую сумму подпространств G_i , таких, что G_i и $G_i + G_j$ являются подалгебрами Ли в G. Параметрами служат числа λ_i , которые могут быть выбраны произвольно.

Для конкретных 3-градуированных алгебр Ли построим серию решений уравнения Янга-Бакстера с квадратом. Пусть G— алгебра матриц размера $(2m+n)\times(2m+n)$ над полем комплексных чисел. Элементы из G будем записывать в виде блочных матриц. Блоки образуются матрицами размера $m_i\times m_j$ $(i=\{1,2,3\},j=\{1,2,3\},m_1=n,m_2=m_3=m.$

Обозначим через G_0 , G_1 , G_{-1} следующие подпространства, задающие градуировку:

$$g_0 = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix} \in G_0, \qquad g_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ * & * & 0 \end{pmatrix} \in G_1, \qquad g_{-1} = \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \in G_{-1}.$$

Легко проверить, что $G = G_0 \oplus G_1 \oplus G_{-1} - 3$ -градуированная алгебра Ли.

Обозначим через P_1 подалгебру в G_0 , образуемую матрицами следующего вида:

$$P_1 = \begin{pmatrix} H_1 & 0 & 0 \\ I_1 & I_2 & 0 \\ 0 & 0 & H_2 \end{pmatrix},$$

где H_1, H_2 — подалгебры Ли в алгебрах матриц C_n и C_m , являющиеся фробениусовыми подпространствами (примеры в § 3). I_1, I_2 состоят из блочных матриц, у которых последняя строка нулевая. Ясно, что P_1 — подалгебра Ли.

Заметим, что $dimp_1 = dimH_1 + dimH_2 + dimI_1 + dimI_2 = n + m + (nm - n) + (m^2 - m) = n + m + nm - n + m^2 - m = m^2 + mn = m(m + n) = dimg_1.$

Зададим элемент e из G_1 формулой

$$e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} & E_m & 0 \end{pmatrix}.$$

Проверим справедливость условия $[P_1, e] = G_1$ из предложения 1. При $q_1 \in H_1, q_2 \in H_2,$ $i_1 \in I_1, i_2 \in I_2$ справедливы равенства

Для того чтобы показать справедливость условия $[P_1,e]=G_1$, нам нужно показать, что на местах блоков (3,1) и (3,2) матрицы (11) стоят произвольные элементы. Подалгебры H_2 и I_2 —дополнительные друг к другу в пространстве матриц размера $m\times m$, кроме того, подпространства $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} H_1$ и I_1 —дополнительные друг к другу в пространстве матриц размера $m\times n$. На местах блоков (3,1) и (3,2) матрицы (11) стоят произвольные элементы, т.к. q_2-i_2 — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный элемент размера $m\times m$ и $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix} 0 \dots 0 \\ 0 \dots 1 \end{pmatrix} q_1+i_1$ — произвольный $\begin{pmatrix}$

$$P_2 = exp(ad_e)(P_1 \oplus G_{-1})$$

И

$$G^1 = G_0, \qquad G^2 = P_2 \cap (G_0 \oplus G_1), \qquad G^3 = P_2 \cap (G_0 \oplus G_{-1}).$$

Легко видеть, что P_i — подалгебры Ли в G и

$$G^1 + G^2 = G_0 + G_1$$
, $G^1 + G^3 = G_0 + G_{-1}$, $G^2 + G^3 = P_2$

— также подалгебры Ли. Согласно замечанию к предложению 5 из [1], мы получили операторы, удовлетворяющие Янгу-Бакстеру с квадратом.

Авторы выражает благодарность В.В. Соколову и Б.И. Сулейманову за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Голубчик И.З., Соколов В.В. Eи \ddot{e} одна разновидность классического уравнения Янга-Бакстера // Функциональный анализ и его приложения. Т. 34, В. 6. 2000. С. 75–78.
- 2. Голубчик И.З., Соколов В.В. *Согласованные скобки Ли и интегрируемые уравнения типа модели главного кирального поля* // Функциональный анализ и его приложения. Т. 36, В. 3. 2002. С. 9–19.
- 3. Голубчик И.З., Соколов В.В. *Факторизация алгебры петель и интегрируемые уравнения типа волчков* // Теоретическая и математическая физика. Т. 141, № 1. 2004. С. 3–23.
- 4. Атнагулова Р.А. *Разновидность классического уравнения Янга-Бакстера* // VI Уфимская международная конференция "Комплексный анализ и дифференциальные уравнения". Сборник тезисов. ИМВЦ УНЦ РАН. Уфа, 2011. С. 25.

Рушания Ахъяровна Атнагулова, Башкирский государственный педагогический университет, ул. Октябрьской революции, 3A, 450000, г. Уфа, Россия E-mail: rushano4ka@mail.ru
Игорь Захарович Голубчик, Башкирский государственный

Игорь Захарович Голуочик, Башкирский государственный педагогический университет, ул. Октябрьской революции, 3A, 450000, г. Уфа, Россия