УДК 517.51

О НЕУЛУЧШАЕМОСТИ ПРЕДЕЛЬНОЙ ТЕОРЕМЫ ВЛОЖЕНИЯ РАЗНЫХ МЕТРИК В ПРОСТРАНСТВАХ ЛОРЕНЦА С ВЕСОМ ЭРМИТТА

Е.С. СМАИЛОВ, А.И. ТАКУАДИНА

Аннотация. В работе получено неравенство разных метрик в пространствах Лоренца с весом Эрмитта для кратных алгебраических многочленов и на ее основе установлено достаточное условие вложения разных метрик в пространствах Лоренца с весом Эрмитта. Его неулучшаемость показана в терминах "крайней функции". А именно установлены следующие утверждения:

Пусть $f \in L_{p,\theta}(\mathbb{R}_n; \rho_n), 1 \leqslant p < +\infty, 1 \leqslant \theta \leqslant +\infty$. Последовательность $\{l_k\}_{k=0}^{+\infty} \subset \mathbb{N}$ такова, что $l_0 = 1$ и $l_{k+1} \cdot l_k^{-1} > a_0 > 1$, $\forall k \in \mathbb{Z}^+$. $f(\bar{x}) = \sum_{k=0}^{+\infty} \Delta_{l_k,\dots,l_k}(f;\bar{x})$ — некоторое представление функций в метрике $L_{p,\theta}(\mathbb{R}_n; \rho_n)$, где $\Delta_{l_0,\dots,l_0}(f;\bar{x}) = T_{1,\dots,1}$, $\Delta_{l_k,\dots,l_k}(f;\bar{x}) = T_{l_k,\dots,l_k}(\bar{x}) - T_{l_{k-1},\dots,l_{k-1}}(\bar{x}), \forall k \in \mathbb{N}.$ Здесь

$$T_{l_k,\dots l_k}(\bar{x}) = \sum_{m_1=0}^{l_k-1} \dots \sum_{m_n=0}^{l_k-1} a_{m_1,\dots,m_n} \prod_{i=1}^n x_i^{m_i}$$

— алгебраические многочлены при всех $k \in \mathbb{Z}^+$.

 1^0 . Если при некоторых q и τ : $p < q < +\infty$, $0 < \tau < +\infty$ ряд

$$A(f)_{p\theta} = \sum_{l_{p,\theta}}^{+\infty} l_k^{\tau\left(\frac{n}{2p} - \frac{n}{2q}\right)} \left\| \Delta_{l_k,\dots,l_k(f)} \right\|_{L_{p,\theta}(\mathbb{R}_n;\rho_n)}^{\tau}$$

сходится, то $f \in L_{q,\tau}(\mathbb{R}_n; \rho_n)$ и при этом справедливо неравенство:

$$||f||_{L_{q,\tau}(\mathbb{R}_n;\rho_n)} \leqslant C_{pq\theta\tau n} \times (A(f)_{p\theta})^{\frac{1}{\tau}}.$$

 2^0 . Условие пункта 1^0 неулучшаемо в том смысле, что существует функция $f_0 \in L_{p,\theta}(\mathbb{R}_n; \rho_n)$ для которой ряд $A(f_0)_{p\theta}$ расходится и при этом $f_0 \notin L_{q,\tau}(\mathbb{R}_n; \rho_n)$. В то же время, для любого $\varepsilon > 0 : p < (q - \varepsilon) < q$ функция $f_0 \in L_{q-\varepsilon,\tau}(\mathbb{R}_n; \rho_n)$.

Ключевые слова: пространство Лоренца, вес Эрмитта, невозрастающая перестановка, неравенство разных метрик, теорема о вложении, неулучшаемость.

1. Введение

Теорема вложения разных метрик в пространствах Лебега $L_p[0,2\pi]$, $1 \le p < +\infty$ в терминах неравенств в разных метриках между тригонометрическими наилучшими приближениями впервые появилась в 1958 г. в работе А.А. Конюшкова [1].

E.S. SMAILOV, A.I. TAKUADINA, ABOUT THE UNIMPROBALITY OF THE LIMITING EMBEDDING THEOREM FOR DIFFERENT METRICS IN THE LORENTZ SPACES WITH HERMITE'S WEIGHT.

[©] Смаилов Е.С., Такуадина А.И. 2011.

Поступила 13 июля 2011 г.

Теорема А. Пусть $f \in L_p[0, 2\pi), 1 \le p < +\infty$.

Если для некоторого q: $p < q \leqslant +\infty$ ряд $\sum_{k=1}^{+\infty} k^{\frac{1}{p}-\frac{1}{q}-1} E_k(f)_p$ сходится, то $f \in L_q[0,2\pi)$, и справедливо неравенство:

$$||f||_q \leqslant C_{pq} \left\{ ||f||_p + \sum_{k=1}^{+\infty} k^{\frac{1}{p} - \frac{1}{q} - 1} E_k(f)_p \right\},$$

здесь $C_{pq} > 0$ зависит лишь от указанных параметров.

Затем П.Л. Ульянов в 1968 г. в терминах модулей непрерывности [2], а в 1970 г. в терминах тригонометрических наилучших приближений [3] улучшил теорему А.А. Конюшкова приведенной здесь. А именно в [3] установлено в частности следующее утверждение:

Теорема В. Пусть $1 \leqslant p < q < +\infty$ и функция $f \in L_p[0, 2\pi)$. Тогда справедливо неравенство: $\|f\|_q \leqslant C_{pq} \left\{ \|f\|_p + \left[\sum_{k=1}^{+\infty} k^{\frac{q}{p}-2} E_k(f)_p \right]^{\frac{1}{q}} \right\}$.

Здесь C_{pq} зависит лишь от указанных параметров.

П.Л. Ульянов показал неулучшаемость теоремы вложения, установленной им в терминах модулей непрерывности в терминах класса H_p^{ω} . А неулучшаемость теоремы В установил В.И. Коляда [4] в терминах класса $E_p(\lambda)$. Классы H_p^{ω} и $E_p(\lambda)$, где указываются неулучшаемость достаточных условий вложения П.Л. Ульянова, достаточно узкие классы, определяемые заданной мажорантой на модуль непрерывности и на тригонометрические наилучшие приближения функций $f \in L_p[0,2\pi)$. Тогда как, множество функций из $L_p[0,2\pi)$, удовлетворяющие достаточное условие вложения П.Л. Ульянова, существенно шире, чем эти указанные классы, поэтому мы считаем неулучшаемость достаточного условия вложения разных метрик естественно будет показать с помощью "крайней функции". А именно, построить пробную функцию $f_0 \in L_p[0,2\pi), 1 \leqslant p < q < +\infty$ такую, что она не удовлетворяет условие теоремы B и $f_0 \notin L_q[0,2\pi)$, но при этом для любого сколь угодно малого $\varepsilon > 0, f_0 \in L_{q-\varepsilon}[0,2\pi)$. С момента появления работ П.Л. Ульянова эта тематика развивалась в разных направлениях. В настоящей работе мы доказываем теорему типа В в пространстве Лоренца с весом Эрмитта $L_{p\theta}(\mathbb{R}_n; \rho_n)$. Это пространство является весьма широким классом функций, элементы которого могут стремиться к бесконечности, и при этом быстрее, чем любой алгебраический многочлен многих переменных, при $|\overline{x}|=\left\{\sum_{k=1}^n x_k^2\right\}^{\frac{1}{2}} \to +\infty$ и показываем неулучшаемость установленной нами теоремы с помощью принципа крайней функций.

2. Определения и вспомагательные предложения

Пусть $1\leqslant p<+\infty,\ 0<\theta\leqslant+\infty$ и $f(\bar x)$ — измеримая в смысле Лебега на \mathbb{R}_n функция; $\rho_n(\bar x)=e^{-\frac{|\bar x|^2}{2}},\ \bar x\in\mathbb{R}_n;\ |\bar x|=\left(\sum\limits_{k=1}^n x_k^2\right)^{\frac{1}{2}},\ d\bar x=dx_1,\dots\ dx_n.$

Через $F(|f\rho_n|;t)$ обозначим невозрастающую перестановку функций $|f(\bar{x})\rho_n(\bar{x})|$ на $\mathbb{R}_n, t \in [0;+\infty)$.

Будем говорить, что $f \in L_{p,\theta}(\mathbb{R}_n; \rho_n)$, [5], если конечна величина:

$$||f||_{L_{p,\theta}(\mathbb{R}_n;\rho_n)} = \left\{ \frac{\theta}{p} \int_0^{+\infty} t^{\frac{\theta}{p}-1} (F(|f\rho_n|;t))^{\theta} dt \right\}^{\frac{1}{\theta}}, \text{при} \quad 0 < \theta < +\infty,$$

$$||f||_{L_{p\infty}(\mathbb{R}_n;\rho_n)} = \sup_{t>0} \left\{ t^{\frac{1}{p}} F(|f\rho_n|;t) \right\}, \text{при} \quad \theta = +\infty.$$

Пусть

$$P_{m_1,\dots,m_n}(\bar{x}) = \sum_{k_1=0}^{m_1-1} \dots \sum_{k_n=0}^{m_n-1} a_{k_1,\dots,k_n} \prod_{i=1}^n x_i^{k_i} -$$

алгебраический многочлен порядка $(m_{k_i}-1)$ по переменной $x_i, m_{k_i} \in \mathbb{N}, i=1,...,n$.

Далее введем обозначения $\Delta_{1,\dots,1}(\overline{x})=P_{1,\dots,1},\ P_{1,\dots,1}\in\mathbb{R}$ и

$$\Delta_{m_k,\dots,m_k}(\overline{x}) = P_{m_k,\dots,m_k}(\overline{x}) - P_{m_{k-1},\dots,m_{k-1}}(\overline{x}), k \in \mathbb{N}.$$

Лемма 1. Пусть $0 . Для любого алгебраического многочлена <math>P_{m_1,\dots,m_n}(\bar{x})$ справедливо следующие неравенства разных метрик

$$\max_{\bar{x} \in \mathbb{R}_n} |P_{\bar{m}}(\bar{x})\rho_n(\bar{x})| \leqslant C_{pn} \prod_{k=1}^n m_k^{\frac{1}{2p}} ||P_{\bar{m}}||_{L_{p\theta}(\mathbb{R}_n; \rho_n)},$$

$$||P_{\overline{m}}||_{L_{q,\tau}(\mathbb{R}_n;\rho_n)} \leqslant A_{pqn} \prod_{k=1}^n m_k^{\frac{1}{2p} - \frac{1}{2q}} ||P_{\overline{m}}||_{L_{p,\theta}(\mathbb{R}_n;\rho_n)},$$

где сомножители $C_{pn}>0,\ A_{pqn}>0$ — зависят лишь от указанных параметров и $\overline{m}=(m_1,...,m_n).$

 $M=(m_1,...,m_n)$. Доказательство. Поскольку $\rho_n(\bar{x})=e^{-\frac{|\bar{x}|^2}{2}},$ то $\lim_{|\bar{x}|\to+\infty}|P_{\bar{m}}(\bar{x})\rho_n(\bar{x})|=0.$ Поэтому $M=\max_{\bar{x}\in\mathbb{R}_n}|P_{\bar{m}}(\bar{x})\rho_n(\bar{x})|$ достигается на какой-то точке $\bar{x}_0=(x_1^0,...,x_n^0)$ с конечными координатами: $|P_{\bar{m}}(\bar{x}_0)\rho_n(x_0)|=M.$

Пусть
$$\bar{x} \in \mathbb{R}_n$$
, то $|\Delta \bar{x}_0| = \left(\sum_{k=1}^n (x_k - x_k^0)\right)^{\frac{1}{2}}$.
 $|P_{\bar{m}}(\bar{x})\rho_n(\bar{x})| \ge |P_{\bar{m}}(\bar{x}_0)\rho_n(\bar{x})| - |(P_{\bar{m}}(\bar{x}_0) - P_{\bar{m}}(\bar{x}))\rho_n(\bar{x})|$. (1)

Так как $\rho_n(\bar{x}) \neq 0, \forall \bar{x} \in \mathbb{R}_n$, то

$$|(P_{\bar{m}}(\bar{x}_0) - P_{\bar{m}}(\bar{x})) \rho_n(\bar{x})| = \left| \left[\left(\sum_{k=1}^n \frac{\partial P_{\bar{m}}(\bar{x}_0)}{\partial x_k} \Delta x_k^0 \right) + o\left(\Delta x_k^0\right) \right] \times \right. \\ \times \rho_n(\bar{x}_0) \cdot \frac{\rho_n(\bar{x})}{\rho_n(\bar{x}_0)} \right| \leqslant$$

$$\leqslant \sum_{k=1}^n \left| \frac{\partial P_{\bar{m}}(\bar{x}_0)}{\partial x_k} \rho_n(\bar{x}_0) \right| \cdot \frac{\rho_n(\bar{x})}{\rho_n(\bar{x}_0)} |\Delta \bar{x}_0| + o\left(\Delta \bar{x}_0\right) \rho_n(\bar{x}). \tag{2}$$

Здесь $\Delta x_k^0 = x_k - x_k^0, \, k = 1, ..., n.$

Перечислим нужные нам свойства функций $\rho_n(\bar{x})$:

- a) $0 \leqslant \rho_n(\bar{x}) \leqslant 1, \forall \bar{x} \in \mathbb{R}_n;$
- 6) $\rho_n(\bar{x}_0) \neq 0$;

в)
$$\rho_n(\bar{x}) \in C(\mathbb{R}_n)$$
 и $\frac{\rho_n(\bar{x})}{\rho_n(\bar{x}_0)}\Big|_{\bar{x}=\bar{x}_0} = 1.$

Следовательно $\forall \varepsilon > 0 \; \exists \delta_{\varepsilon} > 0 \; \text{такое}, \; \text{что} \; \forall \bar{x} \in U_{\delta_{\varepsilon}}(\bar{x}_0) = \{\bar{x} \in \mathbb{R}_n : |\bar{x} - \bar{x}_0| < \delta_{\varepsilon}\} \; \text{имеет}$ место неравенства: $(1 - \varepsilon) < \frac{\rho_n(\bar{x})}{\rho_n(\bar{x}_0)} < (1 + \varepsilon). \; \text{Положим} \; \varepsilon = \frac{1}{2}, \; \text{тогда}$

$$|P_{\bar{m}}(\bar{x}_0)\rho_n(\bar{x})| \ge |P_{\bar{m}}(\bar{x}_0)\rho_n(\bar{x}_0)| \cdot \frac{1}{2} = \frac{M}{2}, \quad \forall \bar{x} \in U_{\frac{1}{2}}(\bar{x}_0).$$
 (3)

Пусть $0 < \delta' \leqslant \delta_{\frac{1}{2}}$. Согласно [5]

$$\left| \frac{\partial P_{\bar{m}}(\bar{x}_0)}{\partial x_k} \rho_n(\bar{x}_0) \right| \leqslant C \sqrt{m_k} \left| P_{\bar{m}}(\bar{x}_0) \rho_n(\bar{x}_0) \right|, \quad k = 1, ..., n$$

как для многочлена переменной x_k , при остальных фиксированных переменных.

Тогда неравенство (2) можем продолжить следующим образом:

$$|(P_{\bar{m}}(\bar{x}_0) - P_{\bar{m}}(\bar{x})) \rho_n(\bar{x})| \leqslant \sum_{k=1}^n C\sqrt{m_k} |P_{\bar{m}}(\bar{x}_0)| \frac{3}{2} |\Delta \bar{x}_0| + o(|\Delta \bar{x}_0|) \leqslant \frac{3}{2} C \cdot M \sum_{k=1}^n \sqrt{m_k} \cdot \delta' + o(|\Delta \bar{x}_0|).$$

Положим $\delta' = \min\left\{\delta_{\frac{1}{2}}, \frac{1}{9C \cdot \sum_{k=1}^n \sqrt{m_k}}\right\}$, тогда

$$|(P_{\bar{m}}(\bar{x}_0) - P_{\bar{m}}(\bar{x})) \rho_n(\bar{x})| < \frac{3}{2}C \cdot M \sum_{k=1}^n \sqrt{m_k} \cdot \frac{1}{9C \cdot \sum_{k=1}^n \sqrt{m_k}} + o(|\Delta \bar{x}_0|) =$$

$$= \frac{M}{6} + o(|\Delta \bar{x}_0|).$$

Поскольку слагаемое $o(|\Delta \bar{x}_0|)$ — бесконечная малая величина при $|\Delta \bar{x}_0| \to 0$, то существует число $\delta_0 > 0$: $0 < \delta_0 < \delta'$ такая, что $o(|\Delta \bar{x}_0|) \leqslant \frac{M}{12}$, $\forall \bar{x} \in U_{\delta_0}(\bar{x}_0)$. Таким образом, $\forall \bar{x} \in U_{\delta_0}(\bar{x}_0)$:

$$|(P_{\bar{m}}(\bar{x}_0) - P_{\bar{m}}(\bar{x})) \rho_n(\bar{x})| < \frac{M}{4}.$$
 (4)

Теперь из неравенств (1), (3), (4) $\forall \bar{x} \in U_{\delta_0}(\bar{x}_0)$ имеем: $|P_{\bar{m}}(\bar{x})\rho_n(\bar{x})| \geq \frac{M}{4}$. Следовательно невозрастающая перестановка функций $|P_{\bar{m}}(\bar{x})\rho_n(\bar{x})|$

Следовательно невозрастающая перестановка функций $|P_{\bar{m}}(\bar{x})\rho_{\bar{n}}(\bar{x})|$ на отрезке $\Delta = [0, mes\ (U_{\delta_0}(\bar{x}_0))]$ имеет оценку

$$\frac{M}{4} \leqslant F\left(\left|P_{\bar{m}}\rho_n\right|; t\right) \leqslant M,$$

где $mes\left(U_{\delta_0}(\bar{x}_0)\right) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \cdot \delta_0^n.$

Пусть $\alpha_n \in (0,1]$ такое число, что

$$0 < \frac{\alpha_n}{9C\sum_{k=1}^n \sqrt{m_k}} \leqslant \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \cdot \delta_0^n$$
 Тогда $\Delta' = \left[0, \frac{\alpha_n}{9C\sum_{k=1}^n \sqrt{m_k}}\right] \subset \left[0, \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \cdot \delta_0^n\right],$ поэтому $\forall t \in \Delta',$ имеем:
$$M = 4 \cdot \frac{M}{4} \cdot \left(\frac{9C\sum_{k=1}^n \sqrt{m_k}}{\alpha_n}\right)^{\frac{1}{p}} \cdot \left\{\frac{\theta}{p} \int_{\Delta'} t^{\frac{\theta}{p}-1} dt\right\}^{\frac{1}{\theta}} \leqslant$$

$$\leqslant 4 \cdot \left(9C\alpha_n^{-1}\right)^{\frac{1}{p}} \cdot \left(2\prod_{k=1}^n \sqrt{m_k}\right)^{\frac{1}{p}} \left\{\frac{\theta}{p} \int_{\Delta'} t^{\frac{\theta}{p}-1} \left(F\left(|P_{\bar{m}}\rho_n|\;;t\right)\right)^{\theta} dt\right\}^{\frac{1}{\theta}} \leqslant$$

$$\leqslant 4 \cdot \left(18C\alpha_n^{-1}\right)^{\frac{1}{p}} \prod_{k=1}^n m_k^{\frac{1}{2p}} \left\{\frac{\theta}{p} \int_0^{+\infty} t^{\frac{\theta}{p}-1} \left(F\left(|P_{\bar{m}}\rho_n|\;;t\right)\right)^{\theta} dt\right\}^{\frac{1}{\theta}}.$$

Таким образом,

$$\max_{\bar{x} \in \mathbb{R}_n} |P_{\bar{m}}(\bar{x})\rho_n(\bar{x})| \leqslant C_{pn} \prod_{k=1}^n m_k^{\frac{1}{2p}} ||P_{\bar{m}}||_{L_{p\theta}(\mathbb{R}_n;\rho_n)}, 0 (5)$$

Здесь мы могли написать $\theta = +\infty$, потому что константа, участвующая в неравенстве, не зависит от θ , поэтому мы можем переходить к пределу при $\theta \to +\infty$.

Пусть теперь
$$0 < q < +\infty, \ 0 < \tau < +\infty$$
 и $a_n = \left(\prod_{k=1}^n \sqrt{m_k}\right)^{-1}$.
$$\|P_{\bar{m}}\|_{L_{q\tau}(\mathbb{R}_n;\rho_n)} = \frac{\tau}{q} \int_0^{a_n} t^{\frac{\tau}{q}-1} \left(F\left(|P_{\bar{m}}\rho_n|;t\right)\right)^{\tau} dt +$$

$$+ \frac{\tau}{q} \int_{a_n}^{+\infty} t^{\frac{\tau}{q}-1} \left(F\left(|P_{\bar{m}}\rho_n|;t\right)\right)^{\tau} dt = J_1 + J_2.$$

$$J_1 \leqslant M^{\tau} \frac{\tau}{q} \int_0^{a_n} t^{\frac{\tau}{q}-1} dt = M^{\tau} \left(\prod_{k=1}^n m_k\right)^{-\frac{\tau}{2q}} \leqslant (5) \leqslant$$

$$\leqslant C_{pn}^{\tau} \left(\prod_{k=1}^n m_k\right)^{\frac{\tau}{2p} - \frac{\tau}{2q}} \|P_{\bar{m}}\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau}.$$

$$(7)$$

Далее, для любого t > 0:

$$t^{\frac{1}{p}}F\left(|P_{\bar{m}}\rho_{n}|;t\right) = F\left(|P_{\bar{m}}\rho_{n}|;t\right) \left\{\frac{\theta}{p} \int_{0}^{t} u^{\frac{\theta}{p}-1} du\right\}^{\bar{\theta}} \leqslant$$

$$\leqslant \left\{\frac{\theta}{p} \int_{0}^{t} u^{\frac{\theta}{p}-1} \left(F\left(|P_{\bar{m}}\rho_{n}|;t\right)\right)^{\theta} du\right\}^{\frac{1}{\bar{\theta}}} \leqslant \|P_{\bar{m}}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}.$$

$$J_{2} = \left(\sup_{t\geq 0} t^{\frac{1}{p}}F\left(|P_{\bar{m}}\rho_{n}|;t\right)\right)^{\tau} \cdot \frac{\tau}{q} \int_{a_{n}}^{+\infty} t^{\frac{\tau}{q}-\frac{\tau}{p}-1} dt \leqslant (8) \leqslant$$

$$\leqslant C_{pq}^{\tau} \cdot \|P_{\bar{m}}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} \cdot a_{n}^{-\left(\frac{\tau}{p}-\frac{\tau}{q}\right)} =$$

$$= C_{pq}^{\tau} \cdot \left(\sum_{k=1}^{n} \sqrt{m_{k}}\right)^{\frac{\tau}{p}-\frac{\tau}{q}} \|P_{\bar{m}}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} \leqslant$$

$$\leqslant D_{pqn}^{\tau} \cdot \left(\prod_{k=1}^{n} \sqrt{m_{k}}\right)^{\frac{\tau}{p}-\frac{\tau}{q}} \|P_{\bar{m}}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau}.$$

$$(9)$$

Теперь из (6), (7), (9) следует, что

$$||P_{\bar{m}}||_{L_{q\tau}(\mathbb{R}_n;\rho_n)} \leqslant A_{pqn} \prod_{k=1}^n m_k^{\frac{1}{2p} - \frac{1}{2q}} ||P_{\bar{m}}||_{L_{p\theta}(\mathbb{R}_n;\rho_n)},$$

0

И здесь, как и в случае (5), можем переходить к пределу при $\tau \to +\infty$. Лемма 2[6]. Пусть $f \in L(\Omega), \Omega \subset \mathbb{R}_n$ и $\alpha \in [0, \mu(\Omega)]$. Тогда

$$\sup_{E \subset \Omega} \sup_{\mu(E) = \alpha} \left\{ \int_{E} |f(\overline{x})| d\overline{x} \right\} = \int_{0}^{\alpha} F(|f|; t) dt.$$

Лемма 3[7]. Пусть последовательность $\{\mu(l)\}_{l=0}^{+\infty}$ такова, что $\mu(0)=1, \frac{\mu(l+1)}{\mu(l)} \geq \alpha > 1,$ $\forall l \in \mathbb{Z}^+$ тогда, для чисел q>0 и $\{a_k\}_{k=0}^{+\infty}, a_k \geq 0$ справедливы неравенства

$$\sum_{l=0}^{+\infty} \mu(l)^r \left(\sum_{k=0}^l a_k\right)^q \leqslant c_1 \sum_{l=0}^{+\infty} \mu(l)^r a_l^q, r < 0;$$

$$\sum_{l=0}^{+\infty} \mu(l)^r \left(\sum_{k=l}^{+\infty} a_k\right)^q \leqslant c_2 \sum_{l=0}^{+\infty} \mu(l)^r a_l^q, r > 0,$$

где $c_i > 0, i = 1, 2$ зависят только от параметров α, r, q .

Лемма 4. Пусть $1 , <math>1 \le \theta \le +\infty$. Существует последовательность неотрицательных алгебраических многочленов $\{P_m^*(x)\}_{m=1}^{+\infty}, x \in \mathbb{R}_1$ степени не выше (m-1) такая, что $C_p'm^{-\frac{1}{2p}} \le \|P_m^*\|_{L_{p,\theta}(\mathbb{R};\rho)} \le C_p''m^{-\frac{1}{2p}}, m \in \mathbb{N}$. Здесь $\rho(x) = e^{-\frac{x^2}{2}}, x \in \mathbb{R}$ и $C_p' > 0, C_p'' > 0$ зависят только от указанных параметров.

Доказательство. В работе [8] была построена последовательность неотрицательных алгебраических многочленов $\{P_m^*(x)\}_{m=1}^{+\infty}$ таких, что $P_m^*(0)=1,$ $A_r'm^{-\frac{1}{2r}}\leqslant \|P_m^*\|_{L_r(\mathbb{R};\rho)}\leqslant A_r''m^{-\frac{1}{2r}},$ $1\leqslant r<+\infty.$ Пусть $1\leqslant r< p<+\infty,$ тогда в силу Леммы 1

$$||P_m^*||_{L_{p\theta}(\mathbb{R};\rho)} \leqslant A_{pr} m^{\frac{1}{2r} - \frac{1}{2p}} ||P_m^*||_{L_r(\mathbb{R};\rho)} \leqslant B_{pr} m^{-\frac{1}{2p}}$$

Если 1 , то

$$||P_m^*||_{L_{p\theta}(\mathbb{R};\rho)} \ge A_{pq}^{-1} m^{\frac{1}{2q} - \frac{1}{2p}} ||P_m^*||_{L_q(\mathbb{R};\rho)} \ge C_{pq} m^{-\frac{1}{2p}}.$$

Лемма 5. Пусть $1 \le p < q < r \le +\infty$, $1 \le \theta \le +\infty$, $1 \le \tau \le +\infty$, и задана последовательность положительных чисел $\{\mu(l)\}$, удовлетворяющая условию $\mu(0) = 1$,

$$\frac{\mu(l+1)}{\mu(l)} \ge \alpha > 1, \forall l \in \mathbb{Z}^+$$

И

$$\psi(\overline{x}) = \sum_{l=0}^{+\infty} \psi_l(\overline{x})$$

в смысле $L^{loc}(\mathbb{R}_n)$, где $\psi_l(x) \in L_{p\theta}(\mathbb{R}_n; \rho_n) \cap L_{r\theta}(\mathbb{R}_n; \rho_n)$. Тогда справедливо неравенство $\|\psi\|_{L_{q\tau}(\mathbb{R}_n; \rho_n)} \leqslant$

$$\leqslant C_{pq\tau\theta rn} \left\{ \sum_{l=0}^{+\infty} \left[\mu(l)^{\tau\left(\frac{1}{r}-\frac{1}{q}\right)} \|\psi_l\|_{L_{r\theta}(\mathbb{R}_n;\rho_n)}^{\tau} + \mu(l)^{\tau\left(\frac{1}{p}-\frac{1}{q}\right)} \|\psi_l\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \right] \right\}.$$

Здесь $C_{pq au heta rn} > 0$ зависит лишь от указанных параметров.

Доказательство. Применяя неравенство Гельдера, получим:

$$\phi(y) = \int_{0}^{y} F(|\psi\rho_{n}|;t)dt = \int_{0}^{y} y^{\frac{1}{p} + \frac{1}{p'} - \frac{1}{\theta} - \frac{1}{\theta'}} F(|\psi\rho_{n}|;t)dt \leqslant$$

$$\leqslant \left\{ \int_{0}^{y} y^{\frac{\theta}{p} - 1} (F(|\psi\rho_{n}|;t))^{\theta} dt \right\}^{\frac{1}{\theta}} \cdot \left\{ \int_{0}^{y} t^{\frac{\theta'}{p'} - 1} dt \right\}^{\frac{1}{\theta'}} =$$

$$= C_{p\theta} y^{1 - \frac{1}{p}} \left\{ \int_{0}^{+\infty} y^{\frac{\theta}{p} - 1} (F(|\psi\rho_{n}|;t))^{\theta} dt \right\}^{\frac{1}{\theta}} \leqslant C'_{p\theta} y^{1 - \frac{1}{p}} \sum_{l=0}^{+\infty} \|\psi_{l}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}. \tag{10}$$

С учетом Леммы 2, точно так же с помощью неравенства Гельдера $\forall k \in \mathbb{N}$ выводим:

$$\phi(y) = \int_{0}^{y} F(|\psi\rho_{n}|;t)du = \sup_{E \subset \mathbb{R}_{n}} \sup_{\mu(E)=y} \int_{E} |\sum_{l=0}^{+\infty} \psi_{l}(\overline{x})\rho_{n}(\overline{x})|d\overline{x} \leqslant$$

$$\leqslant \sup_{E \subset \mathbb{R}_{n}} \sup_{\mu(E)=y} \int_{E} \left|\sum_{l=0}^{k} \psi_{l}(\overline{x})\rho_{n}(\overline{x})\right| d\overline{x} + \sup_{E \subset \mathbb{R}_{n}} \sup_{\mu(E)=y} \int_{E} \left|\sum_{l=k+1}^{+\infty} \psi_{l}(\overline{x})\rho_{n}(\overline{x})\right| d\overline{x} =$$

$$= \int_{0}^{y} F(|\sum_{l=0}^{k} \psi_{l}\rho_{n}|;t)dt + \int_{0}^{y} F(|\sum_{l=k+1}^{+\infty} \psi_{l}\rho_{n}|;t)dt \leqslant$$

$$\leqslant C_{r\theta} y^{1-\frac{1}{r}} \left\{ \int_{0}^{+\infty} t^{\frac{\theta}{r}-1} (F(|\sum_{l=0}^{k} \psi_{l} \rho_{n}|; t))^{\theta} dt \right\}^{\frac{1}{\theta}} + \\
+ C_{p\theta} y^{1-\frac{1}{p}} \left\{ \int_{0}^{+\infty} t^{\frac{\theta}{p}-1} (F(|\sum_{l=k+1}^{+\infty} \psi_{l} \rho_{n}|; t))^{\theta} dt \right\}^{\frac{1}{\theta}} \leqslant \\
\leqslant C'_{r\theta} y^{1-\frac{1}{r}} \sum_{l=0}^{k} \|\psi_{l}\|_{L_{r\theta}(\mathbb{R}_{n}; \rho_{n})} + C'_{p\theta} y^{1-\frac{1}{p}} \sum_{l=k+1}^{+\infty} \|\psi_{l}\|_{L_{p\theta}(\mathbb{R}_{n}; \rho_{n})}. \tag{11}$$

Далее

$$\|\psi\|_{L_{q\tau}(\mathbb{R}_{n};\rho_{n})}^{\tau} \leq$$

$$\leq C_{q\tau}^{\tau} \int_{0}^{+\infty} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \int_{0}^{y} F(|\psi\rho_{n}|;t) dt \right]^{\tau} dy = C_{q\tau}^{\tau} \int_{0}^{+\infty} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \phi(y) \right]^{\tau} dy \leq$$

$$\leq C_{q\tau}^{\tau} \left\{ \int_{0}^{1} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \phi(y) \right]^{\tau} dy + \int_{1}^{+\infty} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \phi(y) \right]^{\tau} d\tau \right\} = I_{1} + I_{2}.$$

С учетом (11) оценим I_1 :

$$\begin{split} I_{1} &\leqslant (C_{rpq\theta}'')^{\tau} \sum_{k=0}^{+\infty} \left\{ \int_{\frac{1}{\mu(k+1)}}^{\frac{1}{\mu(k)}} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \phi(y) \right]^{\tau} d\tau \right\} \leqslant \\ &\leqslant (C_{rpq\theta}'')^{\tau} \sum_{k=0}^{+\infty} \int_{\frac{1}{\mu(k+1)}}^{\frac{1}{\mu(k)}} y^{\frac{\tau}{q}-\tau-1} \left[y^{1-\frac{1}{\tau}} \sum_{l=0}^{k} \|\psi_{e}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})} + \right. \\ &\left. + y^{1-\frac{1}{p}} \sum_{l=k+1}^{+\infty} \|\psi_{e}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})} \right]^{\tau} \leqslant \\ &\leqslant (C_{rpq\theta}''')^{\tau} \sum_{k=0}^{+\infty} \int_{\frac{1}{\mu(k+1)}}^{\frac{1}{\mu(k)}} y^{\frac{\tau}{q}-\tau-1} \left\{ y^{\tau-\frac{\tau}{\tau}} \left(\sum_{l=0}^{k} \|\psi_{e}\|_{L_{r\theta}(\mathbb{R}_{n};\rho_{n})} \right)^{\tau} + \right. \\ &\left. + y^{\tau-\frac{\tau}{p}} \left(\sum_{l=k+1}^{+\infty} \|\psi_{e}\|_{L_{r\theta}(\mathbb{R}_{n};\rho_{n})} \right)^{\tau} \right\} dy \leqslant \\ &\leqslant (C_{rpq\theta}^{IV})^{\tau} \left\{ \sum_{k=0}^{+\infty} (\mu(k))^{\tau(\frac{1}{r}-\frac{1}{q})} \left(\sum_{l=k+1}^{k} \|\psi\|_{L_{r\theta}(\mathbb{R}_{n};\rho_{n})} \right)^{\tau} \right\} \leqslant (\operatorname{Jemma} 3) \leqslant \\ &\leqslant (C_{rpq\theta}^{V})^{\tau} \left\{ \sum_{k=0}^{+\infty} \left[\mu(k)^{\tau(\frac{1}{r}-\frac{1}{q})} \|\psi_{k}\|_{L_{r\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} + \mu(k)^{\tau(\frac{1}{p}-\frac{1}{q})} \|\psi_{k}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} \right] \right\}. \end{split}$$

Слагаемый I_2 оценим с помощью (10):

$$I_{2} \leqslant (b'_{rpq\theta})^{\tau} \int_{1}^{+\infty} y^{\frac{\tau}{q}-1} \left[\frac{1}{y} \cdot y^{1-\frac{1}{p}} \sum_{l=0}^{+\infty} \|\psi_{e}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})} \right]^{\tau} dy =$$

$$= (1 \leqslant p < q < +\infty) = (b'_{rpq\theta})^{\tau} \left(\sum_{l=0}^{+\infty} \|\psi_{e}\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})} \right)^{\tau}.$$

Условия, наложенные на последовательность чисел $\{\mu(k)\}$, позволяют провести следующие выкладки:

$$\sum_{l=0}^{+\infty} \|\psi_e\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)} \leqslant \left\{ \sum_{l=0}^{+\infty} (\mu(l))^{\tau(\frac{1}{p}-\frac{1}{q})} \|\psi_e\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \right\}^{\frac{1}{\tau}} \times \left\{ \sum_{l=0}^{+\infty} (\mu(l))^{-\tau'(\frac{1}{p}-\frac{1}{q})} \right\}^{\frac{1}{\tau'}} = C_{pq\tau} \left\{ \sum_{l=0}^{+\infty} (\mu(l))^{\tau(\frac{1}{p}-\frac{1}{q})} \|\psi_e\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \right\}^{\frac{1}{\tau}}.$$

3. Основные результаты

В настоящем пункте приведем предельную теорему вложения разных метрик в пространствах Лоренца с весом Эрмитта и покажем неулучшаемость условия данной теоремы.

Теорема 1. $1 \leqslant p < +\infty$, $1 \leqslant \theta \leqslant +\infty$ и последовательность $\{l_k\}_{k=0}^{+\infty} \subset \mathbb{Z}^+$ такова, что $l_0 = 1$, $l_{k+1} \cdot l_k^{-1} \geq a_0 > 1$, $\forall k \in \mathbb{Z}^+$. Пусть $f \in L_{p\theta}(\mathbb{R}_n; \rho_n)$ и последовательность алгебраических многочленов $\{P_{l_k,\dots,l_k(\bar{x})}\}_{k=0}^{+\infty}$ такова, что справедливо в метрике пространства $L_{p\theta}(\mathbb{R}_n; \rho_n)$ представление

$$f(\bar{x}) = \sum_{k=0}^{+\infty} \Delta_{l_k,\dots,l_k}(\bar{x}).$$

Если при некоторых q и $\tau \colon p < q < +\infty, \, 1 \leqslant \tau < +\infty$ ряд

$$\sum_{k=0}^{+\infty} l_k^{\tau\left(\frac{n}{2p} - \frac{n}{2q}\right)} \left\| \Delta_{l_k, \dots, l_k^{(f)}} \right\|_{L_{p,\theta}(\mathbb{R}_n; \rho_n)}^{\tau}$$

сходится, то $f \in L_{q,\tau}(\mathbb{R}_n; \rho_n)$, и при этом справедливо неравенство:

$$||f||_{L_{q,\tau}(\mathbb{R}_n;\rho_n)} \leqslant C_{pq\theta\tau n} \left[\sum_{k=0}^{+\infty} l_k^{\tau(\frac{n}{2p} - \frac{n}{2q})} \left\| \Delta_{l_k,\dots,l_k^{(f)}} \right\|_{L_{p,\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \right]^{\frac{1}{\tau}}.$$

Доказательство. Введем обозначение $b_k = l_k^{\frac{n}{2}}, \, k \in \mathbb{Z}^+$. Очевидно, что $b_0 = 1$ и $\frac{b_{k+1}}{b_k} \geq a_0^{\frac{n}{2}} > 1, \, \forall k \in \mathbb{Z}^+$. К разложению $f(\bar{x}) = \sum_{k=0}^{+\infty} \Delta_{l_k,\dots,l_k}$ лемму 5 применим при $r = +\infty$. Тогда

$$||f||_{L_{q\tau}(\mathbb{R}_{n};\rho_{n})}^{\tau} \leqslant$$

$$\leqslant C_{pq\tau\theta n} \left\{ \sum_{k=0}^{+\infty} \left[l_{k}^{-\frac{\tau_{n}}{2q}} ||\Delta_{l_{k},...,l_{k}}||_{L_{\infty,\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} + l_{k}^{\frac{\tau_{n}}{2}(\frac{1}{p} - \frac{1}{q})} ||\Delta_{l_{k},...,l_{k}}||_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau} \right] \right\}.$$

С помощью неравенства разных метрик, приведенного в лемме 1, данное выражение можем продолжить следующим образом:

$$||f||_{L_{q\tau}(\mathbb{R}_n;\rho_n)}^{\tau} \leqslant C'_{pq\tau\theta n} \left\{ \sum_{k=0}^{+\infty} l_k^{\tau\left(\frac{n}{2p} - \frac{n}{2q}\right)} ||\Delta_{l_k,\dots,l_k}||_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \right\}.$$

Теорема 2. Пусть $1 \leqslant p < q < +\infty, \ 1 < \theta < +\infty, \ 1 \leqslant \tau \leqslant +\infty$ и $f \in L_{p\theta}(\mathbb{R}_n; \rho_n)$, $\{l_k\}_{k=0}^{+\infty} \subset \mathbb{Z}^+$: $l_0 = 1, \ l_{k+1} \cdot l_k^{-1} \geq a_0 > 1$. Допустим, что последовательность кратных алгебраических многочленов $\{T_{l_k,\dots,l_k(\bar{x})}\}_{k=0}^{+\infty}$ такова, что в метрике $L_{p\theta}(\mathbb{R}_n; \rho_n)$ справедливо

$$f(\bar{x}) = \sum_{k=0}^{+\infty} \Delta_{l_k,\dots,l_k}(\bar{x}).$$

Тогда справедливо неравенство:

$$||f||_{L_{p\theta}(\mathbb{R}_n;\rho_n)} \ge A_{pq\theta\tau n} \left\{ \sum_{k=0}^{+\infty} l_k^{\theta(\frac{n}{2q} - \frac{n}{2p})} ||\Delta_{l_k,\dots,l_k}||_{L_{q\tau}(\mathbb{R}_n;\rho_n)}^{\theta} \right\}^{\frac{1}{\theta}}.$$

Здесь $A_{pq\theta\tau n}>0$ зависит лишь от указанных параметров. Доказательство. Пусть $p+p'=pp',\ \theta+\theta'=\theta\theta'$ и $g\in L_{p'\theta'}(\mathbb{R}_n;\rho_n)$, а последовательность алгебраических многочленов $\{\phi_{l_m,\dots,l_m}\}_{m=0}^{+\infty}$ является для нее последовательностью многочленов наилучшего приближения в метрике $L_{p'\theta'}(\mathbb{R}_n; \rho_n)$:

$$g(\overline{x}) \sim \phi_{1,\dots,1} + \sum_{m=1}^{+\infty} \left(\phi_{l_m,\dots,l_m}(\overline{x}) - \phi_{l_{m-1},\dots,l_{m-1}}(\overline{x}) \right) = \sum_{m=0}^{+\infty} \Delta_{l_m,\dots,l_m}(g;\overline{x}).$$

Поскольку

$$\int_{R_n} f(\overline{x})g(\overline{x})\rho_n^2(\overline{x})d\overline{x} \leqslant ||f||_{L_{p\theta}(\mathbb{R}_n;\rho_n)} \cdot ||g||_{L_{p'\theta'}(\mathbb{R}_n;\rho_n)},$$

TO

$$||f||_{L_{p\theta}(\mathbb{R}_n;\rho_n)} \ge \sup \left\{ \int_{R_n} f(\overline{x})g(\overline{x})\rho_n^2(\overline{x})d\overline{x} \right\}$$

sup берется по всем $g \in L_{p'\theta'}(\mathbb{R}_n; \rho_n)$ таких, что $\|g\|_{L_{p'\theta'}(\mathbb{R}_n; \rho_n)} \leqslant 1$

$$= \sup \left\{ \int\limits_{R} \left(\sum_{m=0}^{+\infty} \Delta_{l_k,\dots,l_k}(f; \overline{x}) \right) \cdot \left(\sum_{m=0}^{+\infty} \Delta_{l_m,\dots,l_m}(g; \overline{x}) \right) \rho_n^2(\overline{x}) dx \right\}$$

sup берется по всем $g \in L_{p'\theta'}(\mathbb{R}_n; \rho_n)$ таких, что $\|g\|_{L_{p'\theta'}(\mathbb{R}_n; \rho_n)} \leqslant 1$

$$\begin{split} & \underset{R_n}{\text{M}} \Delta_{l_k,\dots,l_k}(f;\overline{x}) \cdot \Delta_{l_m,\dots,l_m}(g;\overline{x}) \rho_n^2(\overline{x}) d\overline{x} = 0, k \neq m \bigg\} = \\ & = \frac{1}{C_{q'p'\theta'\tau'n}} \sup \left\{ \frac{1}{\lambda_1} \cdot C_{q'p'\theta'\tau'n} \cdot \pi^{\frac{n}{2}} \cdot T_{1,\dots,1} \cdot \phi_{1,\dots,1} \cdot \lambda_1 + C_{q'p'\theta'\tau'n} \sum_{k=1}^{+\infty} \lambda_k \times \\ & \times \int_{R_n} \Delta_{l_k,\dots,l_k}(f;\overline{x}) \cdot \Delta_{l_k,\dots,l_k}(g;\overline{x}) \frac{1}{\lambda_{l_k}} \rho_n^2(\overline{x}) d\overline{x} \bigg| \text{ sup берется по всевозможном g,} \end{split}$$

$$\{\lambda_{l_k}\}_{k=0}^{+\infty}$$
: a) $C_{q'p'\tau'\theta'n}\pi^{\frac{n}{2}}|\phi_{1,\dots,1}| \leqslant \lambda_1$;

$$\begin{aligned} \mathbf{6}) C_{q'p'\tau'\theta'n} \|\Delta_{l_k,\dots,l_k}(g)\|_{L_{q'\tau'}(\mathbb{R}_n;\rho_n)} &\leqslant \lambda_{l_k}, \forall k \in N; \\ \mathbf{B}) \left[\sum_{k=0}^{+\infty} l_k^{\theta'(\frac{n}{2q'} - \frac{n}{2p'})} \lambda_{l_k}^{\theta'} \right]^{\frac{1}{\theta'}} &\leqslant 1 \right\} = \\ &= C_{q'p'\tau'\theta'n}^{-1} \sup \left\{ \sum_{k=1}^{+\infty} \lambda_k \|\Delta_{l_k,\dots,k}(f)\|_{L_{q\tau}(\mathbb{R}_n;\rho_n)} \right| \sup \mathsf{беретс} \mathsf{fept} \\ &\mathsf{bcebosmowhum} \left\{ \lambda_{l_k} \right\}_{k=0}^{+\infty} : \left\{ \sum_{k=0}^{+\infty} l_n^{\theta'(\frac{n}{2q'} - \frac{n}{2p'})} \lambda_{l_k}^{\theta'} \right\}^{\frac{1}{\theta'}} &\leqslant 1 \right\} = \\ &= C_{q'p'\tau'\theta'n}^{-1} \sup \left\{ \sum_{k=0}^{+\infty} l_k^{\frac{n}{2q'} - \frac{n}{2p'}} \cdot \lambda_{l_k} \|\Delta_{l_k,\dots,k}(f)\|_{L_{q\tau}(\mathbb{R}_n;\rho_n)} \cdot l_k^{\frac{n}{2q} - \frac{n}{2p}} \right| \sup \mathsf{беретс} \mathsf{fept} \\ &\mathsf{fo} \ \mathsf{bcebosmowhum} \left\{ \lambda_{l_k} \right\}_{k=0}^{+\infty} : \left\{ \sum_{k=0}^{+\infty} l_k^{\theta'(\frac{n}{2q'} - \frac{n}{2p'})} \lambda_{l_k}^{\theta'} \right\}^{\frac{1}{\theta'}} &\leqslant 1 \right\} = \\ &= C_{q'p'\tau'\theta'n}^{-1} \left\{ \sum_{k=0}^{+\infty} l_k^{\theta(\frac{n}{2q} - \frac{n}{2p})} \|\Delta_{l_k,\dots,k}(f)\|_{L_{q\tau}(\mathbb{R}_n;\rho_n)} \right\}^{\frac{1}{\theta'}} &\leqslant 1 \right\} = \\ &= C_{q'p'\tau'\theta'n}^{-1} \left\{ \sum_{k=0}^{+\infty} l_k^{\theta(\frac{n}{2q} - \frac{n}{2p})} \|\Delta_{l_k,\dots,k}(f)\|_{L_{q\tau}(\mathbb{R}_n;\rho_n)} \right\}^{\frac{1}{\theta'}} . \end{aligned}$$

Что и требовалось доказать.

На третьем звене неравенств мы учитывали справедливость неравенства:

$$||g||_{L_{p'\theta'}(\mathbb{R}_n;\rho_n)} \leqslant C_{q'p'\tau'\theta'n} \left[|\phi_{1,\dots,1}|^{\theta'} + \sum_{k=1}^{+\infty} l_k^{\theta'(\frac{n}{2q'} - \frac{n}{2p'})} ||\Delta_{l_k,\dots,k}||_{L_{q'\tau'}(\mathbb{R}_n;\rho_n)} \right]^{\frac{1}{\theta'}} \leqslant$$

$$\leqslant \left[\sum_{k=0}^{+\infty} l_k^{\theta'(\frac{n}{2q'} - \frac{n}{2p'})} \lambda_{l_k}^{\theta'} \right]^{\frac{1}{\theta'}} \leqslant 1.$$

Теорема 3. Пусть $1 и <math>\{l_k\}_{k=0}^{+\infty} \subset \mathbb{Z}^+$ такова, что $l_0 = 1, \ l_{k+1} \cdot l_k^{-1} \geq a_0 > 1, \forall k \in \mathbb{Z}^+$. Теорема 1 неулучшаема в том смысле, что существует функция $f_0 \in L_{p,\theta}(\mathbb{R}_n; \rho_n)$, для которой ряд

$$\sum_{k=0}^{+\infty} l_k^{\tau\left(\frac{n}{2p} - \frac{n}{2q}\right)} \left\| \Delta_{l_k,\dots,l_k}(f_0) \right\|_{L_{p,\theta}(\mathbb{R}_n;\rho_n)}^{\tau}$$

расходится, и при этом $f_0 \notin L_{q,\tau}(\mathbb{R}_n; \rho_n)$, но для любого положительного числа $\varepsilon > 0$: $p < (q - \varepsilon) < q$ функция $f_0 \in L_{q-\varepsilon,\tau}(\mathbb{R}_n; \rho_n)$.

Доказательство. Рассмотрим ряд

$$\sum_{k=0}^{+\infty} l_k^{\frac{n}{2q}} \prod_{i=1}^n P_{l_k}^*(x_i),$$

где многочлены $P_{l_k}^*(x_i)$ из леммы 4.

С помощью леммы 4 получим

$$\left\| \sum_{k=M}^{N} l_{k}^{\frac{n}{2q}} \prod_{i=1}^{n} P_{l_{k}}^{*}(x_{i}) \right\|_{L_{p,\theta}(\mathbb{R}_{n};\rho_{n})} \leq$$

$$\leq \sum_{k=M}^{N} l_{k}^{\frac{n}{2q}} \left\| P_{l_{k}}^{*} \right\|_{L_{p,\theta}(\mathbb{R}_{n};\rho_{n})}^{n} \leq (C_{p\theta}^{"})^{n} \sum_{k=M}^{N} l_{k}^{-(\frac{n}{2p} - \frac{n}{2q})} \longrightarrow 0,$$

при $min(N, M) \longrightarrow +\infty$.

Отсюда следует, что существует функция $f_0 \in L_{p\theta}(\mathbb{R}_n; \rho_n)$ такая, что в смысле сходимости пространства $L_{p\theta}(\mathbb{R}_n; \rho_n), 1 справедливо равенство$

$$f_0(\overline{x}) = \sum_{k=0}^{+\infty} l_k^{\frac{n}{2q}} \prod_{i=1}^n P_{l_k}^*(x_i).$$

Если ввести обозначение $T_{l_m,...,l_m}(\overline{x}) = \sum_{k=0}^m l_k^{\frac{n}{2q}} \prod_{i=1}^n P_{l_k}^*(x_i)$, то

$$\Delta_{l_{\nu},\dots,l_{\nu}}(f_0; \overline{x}) = l_{\nu}^{\frac{n}{2q}} \prod_{i=1}^{n} P_{l_{\nu}}(x_i), \nu \in Z^+.$$

Далее, в силу леммы 4, имеет место следующая цепочка неравенств:

$$\sum_{k=0}^{+\infty} l_k^{\tau(\frac{n}{2p} - \frac{n}{2q})} \|\Delta_{l_k, \dots, l_k}(f_0)\|_{L_{p, \theta}(\mathbb{R}_n; \rho_n)}^{\tau} = \sum_{k=0}^{+\infty} l_k^{\tau(\frac{n}{2p} - \frac{n}{2q})} \cdot l_k^{\frac{n}{2q}} \|P_{l_k}^*\|_{L_{p\theta}(\mathbb{R}_n; \rho_n)}^{n\tau} \ge$$

$$\geq (C'_{p\theta})^{\tau n} \sum_{k=0}^{N} l_{k}^{\tau(\frac{n}{2p} - \frac{n}{2q})} \cdot l_{k}^{-\tau(\frac{n}{2p} - \frac{n}{2q})} = (C'_{p\theta})^{\tau n} (N+1) \to +\infty,$$

при $N \to +\infty$. Таким образом, на функции $f_0 \in L_{p\theta}(\mathbb{R}_n; \rho_n)$ ряд, стоящий в левой стороне данных соотношений расходится. Теперь для этой же функции, согласно теореме 2, имеем:

$$\left\| \sum_{k=0}^{M} l_{k}^{\frac{n}{2q}} \prod_{i=1}^{n} P_{l_{k}}^{*}(\cdot) \right\|_{L_{q\tau}(\mathbb{R}_{n};\rho_{n})} \ge C_{q\tau\theta n} \left\{ \sum_{k=0}^{M} l_{k}^{\tau(\frac{n}{4q} - \frac{n}{2q})} l_{k}^{\frac{n\tau}{2q}} \|P_{l_{k}}^{*}\|_{L_{2q\theta}(\mathbb{R}_{n};\rho_{n})}^{n\tau} \right\}^{\frac{1}{\tau}} \ge$$

$$\geq C'_{q\tau\theta n} \left\{ \sum_{k=0}^{M} l_k^{\frac{\tau n}{4q}} l_k^{-\frac{\tau n}{4q}} \right\}^{\frac{1}{\tau}} = C'_{q\tau\theta n} (M+1)^{\frac{1}{\tau}} \to +\infty,$$

при $M \to +\infty$. Это означает, что $f_0 \notin L_{q\tau}(\mathbb{R}_n; \rho_n), 1 . Пусть <math>\varepsilon > 0$ произвольное положительное число такое, что $p < (q - \varepsilon) < q < +\infty, 1 \leqslant \theta \leqslant +\infty, 1 \leqslant \tau < +\infty$. Тогда согласно лемме 4:

$$\sum_{k=0}^{M} l_k^{\tau(\frac{n}{2p} - \frac{n}{2(q-\varepsilon)})} \|\Delta_{l_k,\dots,l_k}(f_0)\|_{L_{p\theta}(\mathbb{R}_n;\rho_n)}^{\tau} \leqslant$$

$$\leqslant (C_{p\theta}'')^{\tau n} \sum_{k=0}^{M} l_{k}^{\tau(\frac{n}{2p} - \frac{n}{2(q-\varepsilon)})} \cdot l_{k}^{\frac{\tau n}{2q}} \left\| P_{l_{k}}^{*} \right\|_{L_{p\theta}(\mathbb{R}_{n};\rho_{n})}^{\tau n} \leqslant$$

$$(C_{p\theta}^{\prime\prime\prime})^{\tau n} \sum_{k=0}^{+\infty} l_k^{-\tau(\frac{1}{2(q-\varepsilon)} - \frac{1}{2q})} < +\infty, \forall m \in \mathbb{N}.$$

Следовательно, согласно теореме 1: $f_0 \in L_{q-\varepsilon,\tau}(\mathbb{R}_n;\rho_n), 1 \leqslant \tau < +\infty$, тем самым теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Конюшков А.А. Наилучшие приближения тригонометрическими полиномами и коэффициенты Φ урье // Математический сборник. 1958. 44(86). С. 53–84.
- 2. Ульянов П.Л. Вложение некоторых классов функций A_p^ω // Извстия АА СССР, серия математическая. 1968. 32,3. С. 649–686.
- 3. Ульянов П.Л. *Теоремы вложения и соотношения между наилучшими (модулями непрерывности) в разных метриках* // Математический сборник. 1970. 81(123). С. 104–131.
- 4. Коляда В.И. *Теоремы вложения и неравенства разных метрик для наилучших приближений* // Математический сборник. 1977. 104(144),2. С. 125-225.
- 5. Фройд Г. Об одном неравенстве Марковского типа // ДАН СССР. 1971. Т. 197, № 4. С. 790—793.
- 6. Стейн Н., Вейс Г. *Введение в гармонический анализ на Евклидовых пространствах*. Мир, 1974.
- 7. Гольдман М.Л. Теоремы вложения для анизатропных пространств Никольского-Бесова с модулями непрерывности общего вида // Труды МНАН СССР. 1984. Т. 170. С. 86–124.
- 8. Алексеев Д.В. Приближение функций одной и нескольких действительных переменных с весом Чебышева-Эрмитта // Дисс. к.ф.-м.н., М., МГУ им. М.В.Ломоносова.

Есмуханбет Сайдахметович Смаилов,

РГКП "Институт прикладной математики"КН МОН РК,

ул. Университетская, 28 "А

100028, г. Караганда, Казахстан

E-mail: esmailov@mail.ru

Алия Ибрагимовна Такуадина,

Карагандинский государственный медицинский университет,

ул. Гоголя, 40,

100000, г. Караганда, Казахстан

E-mail: Alyoka.01@mail.ru