УДК 517.925

О НЕОБХОДИМЫХ УСЛОВИЯХ СУЩЕСТВОВАНИЯ ПЕРИОДИЧЕСКИХ РЕШЕНИЙ В ДИНАМИЧЕСКОЙ СИСТЕМЕ С РАЗРЫВНОЙ НЕЛИНЕЙНОСТЬЮ И ВНЕШНИМ ПЕРИОДИЧЕСКИМ ВОЗДЕЙСТВИЕМ

В.В. ЕВСТАФЬЕВА

Аннотация. В евклидовом пространстве рассматривается система обыкновенных дифференциальных уравнений с разрывной нелинейностью типа неидеального реле и внешним непрерывным периодическим воздействием в правой части. Точными аналитическими методами получены необходимые условия на коэффициенты системы для существования периодических решений с заданными свойствами в задачах указанного класса. Предложен подход для нахождения моментов времени и точек переключения изображающей точки искомого решения в случае, когда период решения кратен периоду функции, описывающей внешнее возмущение.

Ключевые слова: точки переключения, вынужденные периодические колебания, автоматические системы управления, разрывная гистерезисная нелинейность.

Введение

Ключевой задачей в теории нелинейных колебаний является доказательство существования периодических режимов в нелинейных системах управления. В данной работе предлагается подход к решению этого вопроса для нелинейных систем обыкновенных дифференциальных уравнений, содержащих гистерезисную нелинейность и внешнее возмущение, приложенное к объекту управления. В качестве объекта управления можно рассматривать автоматические системы, используемые на морских судах, к примеру, системы управления курсом судна или успокоителей качки. Математические модели таких объектов исследования изучались рядом авторов (см., например, работы [1]–[3]).

В отличие от работы [3] автором данной статьи используется другой подход к исследованию систем рассматриваемого класса, ослаблены ограничения на изучаемую систему, ищутся периодические решения с периодом не только равным, но и кратным периоду внешнего возмущения. В работе [4] рассматривалось непериодическое внешнее воздействие с изменяющейся во времени амплитудой, а в отличие от [5] в данной работе сделан акцент на поиске моментов времени переключения, при которых происходит переключение искомых режимов, и анализе пространства коэффициентов исходной системы.

1. Постановка задачи

В n-мерном евклидовом пространстве E^n рассматривается система обыкновенных дифференциальных уравнений вида

$$\dot{Y} = AY + Bu(\sigma) + Kf(t), \quad \sigma = (C, Y). \tag{1}$$

V.V. YEVSTAFYEVA, ON NECESSARY CONDITIONS FOR EXISTENCE OF PERIODIC SOLUTIONS IN A DYNAMIC SYSTEM WITH DISCONTINUOUS NONLINEARITY AND AN EXTERNAL PERIODIC INFLUENCE.

[©] Евстафьева В.В. 2011.

Поступила 18 января 2011 г.

Здесь матрица A, векторы B, K, C — вещественные и постоянные, Y — вектор состояний системы ($Y \in E^n$). Функция $u(\sigma)$ описывает нелинейность типа неидеального реле с пороговыми числами ℓ_1 , ℓ_2 и выходными числами m_1 , m_2 . Положим для определенности, что $\ell_1 < \ell_2$ и $m_1 < m_2$. Функция $u(\sigma(t))$ определена для $t \geq 0$ в классе непрерывных функций, может принимать только два значения m_1 и m_2 и задается следующим образом. При $\sigma(t) \leq \ell_1$ выполнено равенство $u(\sigma(t)) = m_1$, а при $\sigma(t) \geq \ell_2$ — равенство $u(\sigma(t)) = m_2$. Если же $\ell_1 < \sigma(t) < \ell_2$ при всех $\ell_1 < \ell_2$ и при этом $\sigma(\ell_1) = \ell_1$ или $\sigma(\ell_1) = \ell_2$, то положим $u(\sigma(t)) = u(\sigma(\ell_1))$. Наконец, если $\ell_1 < \sigma(t) < \ell_2$ при всех $0 \leq t < \ell_2$, то положим $u(\sigma(t)) = u_0$, где u_0 — одно из чисел m_1 или m_2 . В ситуации, когда имеет место последний из случаев, динамика системы будет различной в зависимости от выбранного начального состояния u_0 реле. Петля гистерезиса, описываемая в координатах (σ, u) уравнениями $\sigma = \sigma(t)$, $u = u(\sigma(t))$, обегается против хода часовой стрелки. Функция f(t) описывает внешнее воздействие на систему и принадлежит классу непрерывных периодических функций.

Рассматривается вопрос о существовании и нахождении таких моментов времени переключения, при которых в реле происходит переключение для возникновения и поддержания в системе периодических колебаний.

2. Общий подход к исследованию системы

В работе [3] А.В. Покровским получены сильные аналитические результаты для систем рассматриваемого класса. Доказана теорема о существовании, по крайней мере, одного асимптотически устойчивого решения с периодом, равным периоду внешнего воздействия. При этом предполагаются условие позитивности системы (ограничения на вектор коэффициентов обратной связи C) и гурвицевость матрицы A.

В данной работе для исследования систем вида (1) предлагается иной подход, позволяющий определять в пространстве коэффициентов системы такие множества, которым отвечают периодические решения с периодом, кратным периоду внешнего воздействия, а в случае равенства периодов снимаются выше упомянутые ограничения на систему.

В основе данного подхода лежат точные аналитические методы исследования, а именно, методы теории канонических преобразований систем, результаты В.И. Зубова [1], основанные на идеи построения вспомогательной системы с учетом свойства периодичности решения для автономных систем, и метод сечения пространства параметров системы, предложенный Р.А. Нелепиным [2].

В фазовом n-мерном пространстве траектория любого решения системы (1) может быть составлена из кусков траекторий в силу линейных систем следующего вида:

$$\dot{Y} = AY + Bm_1 + Kf(t), \quad \dot{Y} = AY + Bm_2 + Kf(t).$$
 (2)

"Сшивание" кусков траекторий по непрерывности происходит в точках, лежащих на гиперплоскостях вида $(C,Y)=\ell_i \ (i=1,2).$

Будем искать решения системы (1) в классе непрерывных, периодических функций для определенности с двумя точками переключения, которыми в дальнейшем будем называть точки "сшивания". В n-мерном фазовом пространстве периодическим решениям системы (1) соответствуют замкнутые, ограниченные траектории. В расширенном (n+1)-м пространстве (Y,t) периодическому решению системы (1) отвечает интегральная кривая, состоящая из нескольких интегральных кривых в силу разных систем вида (2). Эти кривые повторяются с некоторым периодом T_B , который в дальнейшем будем называть периодом вынужденных колебаний системы (1). Точки переключения Y^1 , Y^2 периодического решения (точки "сшивания" кусков траекторий) обладают следующим свойством:

$$Y^{i} = Y(t_0, m_i, t_0) = Y(t_0, m_i, t_0 + T_B), (C, Y^{i}) = \ell_k \ \forall i, j, k = 1, 2,$$

т. е. можно выписать 8 различных систем в зависимости от выбранной последовательности движения изображающей точки периодического решения от одной гиперплоскости к другой гиперплоскости.

Рассмотрим решение системы (1) в форме Коши

$$Y(t) = e^{A(t-t_0)}Y(t_0) + \int_{t_0}^t e^{-A(\tau-t)} (Bm_i + Kf(\tau)) d\tau \quad (i = 1, 2).$$

Предположим, что система (1) имеет хотя бы одно периодическое решение с периодом T_B . Пусть изображающая точка искомого периодического решения системы (1) начинает свое движение в точке Y^1 на гиперплоскости $\sigma = \ell_1$ в момент времени $t_0 = 0$ и достигает точки Y^2 на гиперплоскости $\sigma = \ell_2$ в момент времени t_1 в силу системы (2) при условии, что $m_i = m_1$. Затем она возвращается в точку Y^1 на гиперплоскости $\sigma = \ell_1$ в момент времени T_B в силу системы (2) при условии, что $m_i = m_2$.

Построим систему трансцендентных уравнений относительно точек переключения и моментов времени переключения, исходя из свойства периодичности искомого решения и учитывая, что точки переключения лежат на гиперплоскостях, а изображающая точка решения движется по траектории в предписанной выше ей последовательности. Имеем

$$\ell_1 = (C, Y^1), \quad \ell_2 = (C, Y^2),$$
 (3)

где

$$Y^{2} = e^{At_{1}}Y^{1} + \int_{0}^{t_{1}} e^{A(t_{1}-\tau)} (Bm_{1} + Kf(\tau))d\tau,$$

$$Y^{1} = e^{A(T_{B}-t_{1})}Y^{2} + \int_{t_{1}}^{T_{B}} e^{A(T_{B}-\tau)} (Bm_{2} + Kf(\tau))d\tau.$$

Полученную систему из 4-х уравнений можно решать относительно t_1 , T_B , Y^1 , Y^2 численными методами. Для разрешимости системы (3) в аналитическом виде преобразуем исходную систему.

Пусть для определенности матрица A имеет только простые, ненулевые, вещественные собственные числа λ_i ($i=\overline{1,n}$), система (1) полностью управляема по отношению ко входу $u(\sigma)$, т. е. выполняется неравенство

$$\det ||B, AB, A^2B, \dots, A^{n-1}B|| \neq 0.$$

В этом случае система (1) может быть приведена к каноническому виду неособым преобразованием Y = SX:

$$\dot{X} = A_0 X + B_0 u(\sigma) + K_0 f(t), \quad \sigma = (\Gamma, X), \tag{4}$$

где

$$A_0 = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}, \quad B_0 = S^{-1}B = \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix}, \quad K_0 = S^{-1}K, \quad \Gamma = \begin{pmatrix} \gamma_1 \\ \dots \\ \gamma_n \end{pmatrix}.$$

Коэффициенты γ_i $(i = \overline{1,n})$ вычисляются по формуле:

$$\gamma_i = \frac{-1}{D'(\lambda_i)} \sum_{k=1}^n c_k N_k(\lambda_i), \tag{5}$$

где $D'(\lambda_i) = \frac{dD(p)}{dp}\Big|_{p=\lambda_i}$, c_k — элементы вектора C, $N_k(\lambda_i) = \sum_{j=1}^n b_j D_{jk}(\lambda_i)$. Здесь b_j — элементы вектора B, D_{jk} — алгебраическое дополнение элемента a_{jk} матрицы A, λ_i — корни алгебраического уравнения $D(p) = \det \left[a_{k\alpha} - \delta_{k\alpha} p \right] = 0$, $a_{k\alpha}$ — элементы матрицы A, $\delta_{k\alpha}$ — символ Кронекера. Матрица преобразования S имеет следующий вид:

$$S = - \begin{pmatrix} \frac{N_1(\lambda_1)}{D'(\lambda_1)} & \cdots & \frac{N_1(\lambda_n)}{D'(\lambda_n)} \\ \vdots & \ddots & \vdots \\ \frac{N_n(\lambda_1)}{D'(\lambda_1)} & \cdots & \frac{N_n(\lambda_n)}{D'(\lambda_n)} \end{pmatrix}.$$

Далее, следуя [2], предполагаем, что (n-1) корней уравнения D(p)=0 совпадают с (n-1) корнями уравнения $\sum_{k=1}^{n} c_k N_k(p)=0$. Тогда (n-1) величин γ_i , определяемых по формуле (5), обращаются в нуль, а одна величина γ_i не равна нулю. Индекс, при котором $\gamma_i \neq 0$, обозначим через s, т. е. $\gamma_s \neq 0$.

Таким образом, система n-го порядка распадается на системы более низкого порядка, которые могут быть последовательно проинтегрированы. Это приводит и к упрощению систему трансцендентных уравнений (3).

При условии, что $\gamma_i=0$ $(i\neq s)$, функция $\sigma(t)=(\Gamma,X(t))$ определяется из системы первого порядка

$$\sigma(t) = \gamma_s x_s, \quad \dot{x}_s = \lambda_s x_s + u(\sigma) + k_s^0 f(t), \tag{6}$$

остальные переменные x_i ($i \neq s$) определяются из неоднородных линейных уравнений первого порядка

$$\dot{x}_i = \lambda_i x_i + u(\sigma) + k_i^0 f(t), \quad i \neq s.$$
 (7)

Выпишем дифференциальное уравнение относительно функции $\sigma(t)$:

$$\dot{\sigma}(t) = \lambda_s \sigma(t) + \gamma_s(u(\sigma(t)) + k_s^0 f(t)). \tag{8}$$

Поскольку ищутся периодические решения системы (1) и $\sigma(t) = \sigma(x_s(t))$, то предполагаем, что функция $\sigma(t)$ относится к классу непрерывных периодических функций. С помощью решения уравнения (8) можно определить условия периодичности функции $\sigma(t)$ и его свойства (период T_B и момент времени переключения t_1).

Решение системы уравнений (6), (7) имеет следующий вид:

$$x_i(t) = x_i(0)e^{\lambda_i t} + e^{\lambda_i t} \int_0^t (u(\sigma(\tau)) + k_i^0 f(\tau))e^{-\lambda_i \tau} d\tau,$$

$$x_s(t) = \sigma(t)/\gamma_s = (\sigma_0/\gamma_s)e^{\lambda_s t} + e^{\lambda_s t} \int_0^t (u(\sigma(\tau) + k_s^0 f(\tau))e^{-\lambda_s \tau} d\tau.$$
 (9)

Система уравнений (9) определяет точечное отображение одной плоскости переключения в другую. Выпишем решение уравнения (8) в общем виде

$$\sigma(t) = \sigma_0 e^{\lambda_s(t - t_0)} + \gamma_s e^{\lambda_s t} \left(m_i \int_{t_0}^t e^{-\lambda_s \tau} d\tau + k_s^0 \int_{t_0}^t e^{-\lambda_s \tau} f(\tau) d\tau \right)$$

с начальными и граничными условиями

$$\ell_1 = \sigma(\ell_1, 0, m_1, 0), \quad \ell_2 = \sigma(\ell_1, 0, m_1, t_1), \quad \ell_1 = \sigma(\ell_2, t_1, m_2, T_R).$$

Система трансцендентных уравнений для нахождения только моментов времени переключения t_1, T_B имеет следующий вид:

$$\ell_2 = \left(\ell_1 + \frac{\gamma_s m_1}{\lambda_s}\right) e^{\lambda_s t_1} - \frac{\gamma_s m_1}{\lambda_s} + \gamma_s k_s^0 \int_0^{t_1} e^{\lambda_s (t_1 - \tau)} f(\tau) d\tau,$$

$$\ell_1 = \left(\ell_2 + \frac{\gamma_s m_2}{\lambda_s}\right) e^{\lambda_s (T_B - t_1)} - \frac{\gamma_s m_2}{\lambda_s} + \gamma_s k_s^0 \int_t^{T_B} e^{\lambda_s (T_B - \tau)} f(\tau) d\tau. \tag{10}$$

Точки переключения X^1 , X^2 преобразованной системы (4) определяются по следующим формулам:

$$X^{1} = \left(E - e^{A_{0}T_{B}}\right)^{-1} \left(\int_{t_{1}}^{T_{B}} e^{A_{0}(T_{B} - \tau)} \left(B_{0}m_{2} + K_{0}f(\tau)\right) d\tau + \int_{0}^{t_{1}} e^{A_{0}(T_{B} - \tau)} \left(B_{0}m_{1} + K_{0}f(\tau)\right) d\tau\right),$$

$$X^{2} = \left(E - e^{A_{0}T_{B}}\right)^{-1} \left(\int_{0}^{t_{1}} e^{A_{0}(t_{1} - \tau)} \left(B_{0}m_{1} + K_{0}f(\tau)\right) d\tau + e^{A_{0}t_{1}} \int_{t_{1}}^{T_{B}} e^{A_{0}(T_{B} - \tau)} \left(B_{0}m_{2} + K_{0}f(\tau)\right) d\tau\right).$$

3. Основной результат

Рассмотрим модель внешнего возмущения следующего вида:

$$f(t) = f_0 + f_1 \sin(\omega t + \varphi_1) + f_2 \sin(2\omega t + \varphi_2),$$
 (11)

где $f_0, f_1, f_2, \varphi_1, \varphi_2, \omega$ — вещественные постоянные.

Функцию f(t) вида (11) можно рассматривать как укороченный ряд Фурье. Поскольку любая периодическая функция, удовлетворяющая принципу Дирихле, может быть представлена в виде сходящегося ряда Фурье, то представление (11) является приближением произвольного периодического внешнего воздействия.

Основным результатом работы является следующая теорема.

Теорема. Пусть функция f(t) имеет вид (11). Пусть система (1) имеет периодическое решение с периодом $T_B = kT$, где $k \in \mathbb{N}$, $T = 2\pi/\omega$, $\omega > 0$. Пусть все собственные числа матрицы A являются простыми, вещественными, u, по крайней мере, одно из них положительное ($\lambda_s > 0$), причем элемент γ_s преобразованного вектора обратной связи Γ отличен от нуля. Пусть, наконец, имеют место неравенства I)

$$m_2 - m_1 e^{\lambda_s kT} + \lambda_s (1 - e^{\lambda_s kT}) (\ell_1 / \gamma_s + k_s^0 L) > 0,$$

$$m_1 < -\lambda_s \left(\frac{\ell_1}{\gamma_s} + k_s^0 L\right) < m_2,$$

$$L = \frac{f_0}{\lambda_s} + \frac{f_1 \sin(\varphi_1 + \delta_1)}{\sqrt{\lambda_s^2 + \omega^2}} + \frac{f_2 \sin(\varphi_2 + \delta_2)}{\sqrt{\lambda_s^2 + 4\omega^2}},$$

где

$$\delta_{1} = \operatorname{arctg}(\omega/\lambda_{s}), \delta_{2} = \operatorname{arctg}(2\omega/\lambda_{s});$$

$$\left(\ell_{1} + \frac{\gamma_{s}}{\lambda_{s}}(m_{1} + k_{s}^{0}f_{0})\right) (e^{\lambda_{s}kT}H - 1) + \frac{\gamma_{s}k_{s}^{0}f_{1}}{\sqrt{\lambda_{s}^{2} + \omega^{2}}} \left(\sin(\varphi_{1} + \delta_{1})e^{\lambda_{s}kT}H - \sin\left(\frac{\omega}{\lambda_{s}}\ln H + \varphi_{1} + \delta_{1}\right)\right) + \frac{\gamma_{s}k_{s}^{0}f_{2}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}} \left(\sin(\varphi_{2} + \delta_{2})e^{\lambda_{s}kT}H - \sin\left(\frac{2\omega}{\lambda_{s}}\ln H + \varphi_{2} + \delta_{2}\right)\right) > 0,$$

 $e \partial e$

$$H = \frac{m_2 - m_1}{\lambda_s (1 - e^{\lambda_s kT}) (\ell_1 / \gamma_s + k_s^0 L) + m_2 - m_1 e^{\lambda_s kT}};$$

и равенство 3)

$$\ell_2 = \ell_1 e^{\lambda_s kT} H + \frac{\gamma_s}{\lambda_s} (m_1 + k_s^0 f_0) (e^{\lambda_s kT} H - 1) + \frac{\gamma_s k_s^0 f_1}{\sqrt{\lambda_s^2 + \omega^2}} \left(\sin(\varphi_1 + \delta_1) e^{\lambda_s kT} H - \sin\left(\frac{\omega}{\lambda_s} \ln H + \varphi_1 + \delta_1\right) \right) + \frac{\gamma_s k_s^0 f_2}{\sqrt{\lambda_s^2 + 4\omega^2}} \left(\sin(\varphi_2 + \delta_2) e^{\lambda_s kT} H - \sin\left(\frac{2\omega}{\lambda_s} \ln H + \varphi_2 + \delta_2\right) \right).$$

Тогда система (10) имеет единственное решение $t_1 \in (0, kT)$, которое определяется по формуле $t_1 = kT + \frac{1}{\lambda_s} \ln H$.

Доказательство теоремы.

Система трансцендентных уравнений (10) при условии $\lambda_s > 0$ принимает следующий вид:

$$\ell_{2} = \left(\ell_{1} + \frac{\gamma_{s}}{\lambda_{s}}(m_{1} + k_{s}^{0}f_{0}) + \frac{\gamma_{s}k_{s}^{0}f_{1}}{\sqrt{\lambda_{s}^{2} + \omega^{2}}}\sin(\varphi_{1} + \delta_{1}) + \frac{\gamma_{s}k_{s}^{0}f_{2}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}}\sin(\varphi_{2} + \delta_{2})\right) e^{\lambda_{s}t_{1}} - \frac{\gamma_{s}}{\lambda_{s}}(m_{1} + k_{s}^{0}f_{0}) - \frac{\gamma_{s}k_{s}^{0}f_{1}}{\sqrt{\lambda_{s}^{2} + \omega^{2}}}\sin(\omega t_{1} + \varphi_{1} + \delta_{1}) - \frac{\gamma_{s}k_{s}^{0}f_{2}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}}\sin(2\omega t_{1} + \varphi_{2} + \delta_{2}),$$

$$\ell_{1} = \left(\ell_{2} + \frac{\gamma_{s}}{\lambda_{s}}(m_{2} + k_{s}^{0}f_{0}) + \frac{\gamma_{s}k_{s}^{0}f_{1}}{\sqrt{\lambda_{s}^{2} + \omega^{2}}}\sin(\omega t_{1} + \varphi_{1} + \delta_{1}) + \frac{\gamma_{s}k_{s}^{0}f_{2}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}}\sin(2\omega t_{1} + \varphi_{2} + \delta_{2})\right) e^{\lambda_{s}(T_{B} - t_{1})} - \frac{\gamma_{s}}{\lambda_{s}}(m_{2} + k_{s}^{0}f_{0}) - \frac{\gamma_{s}k_{s}^{0}f_{1}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}}\sin(\omega T_{B} + \varphi_{1} + \delta_{1}) - \frac{\gamma_{s}k_{s}^{0}f_{2}}{\sqrt{\lambda_{s}^{2} + 4\omega^{2}}}\sin(2\omega T_{B} + \varphi_{2} + \delta_{2}).$$

$$(12)$$

В случае, когда периодическое решение системы (1), (11) ищется с наперед заданным периодом, а именно, $T_B = kT$, $k \in \mathbb{N}$, $T = 2\pi/\omega$, система трансцендентных уравнений (12) зависит только от одной переменной t_1 , а в результате указанного выбора коэффициентов обратной связи γ_i ($i = \overline{1,n}$) аналитически разрешима относительно этой переменной.

Первое уравнение системы (12) подставим во второе уравнение и после преобразования имеем:

$$(1 - e^{\lambda_s kT}) \left(\ell_1 + \gamma_s k_s^0 \left(\frac{f_0}{\lambda_s} + \frac{f_1}{\sqrt{\lambda_s^2 + \omega^2}} \sin(\varphi_1 + \delta_1) + \frac{f_2}{\sqrt{\lambda_s^2 + 4\omega^2}} \sin(\varphi_2 + \delta_2) \right) \right) + \frac{\gamma_s}{\lambda_s} (m_2 - m_1 e^{\lambda_s kT}) = \frac{\gamma_s}{\lambda_s} (m_2 - m_1) e^{\lambda_s (kT - t_1)},$$

отсюда получаем формулу для определения переменной t_1 .

Далее определим условия на параметры, при которых существует решение t_1 .

По предположению $m_2 > m_1$, поэтому в формуле, определяющей переменную t_1 , стоящее в знаменателе под логарифмом выражение должно быть положительным, отсюда следует первое неравенство условия 1) теоремы.

Поскольку переменная t_1 определена как первый момент переключения, то она, очевидно, должна принадлежать промежутку (0, kT), где $k \in \mathbb{N}$. Это возможно, если выполняются следующие неравенства:

$$m_2 - m_1 < \lambda_s (1 - e^{\lambda_s kT}) \left(\ell_1 / \gamma_s + k_s^0 L \right) + m_2 - m_1 e^{\lambda_s kT},$$

 $m_2 - m_1 > \lambda_s \frac{(1 - e^{\lambda_s kT})}{e^{\lambda_s kT}} \left(\ell_1 / \gamma_s + k_s^0 L \right) + \frac{m_2}{e^{\lambda_s kT}} - m_1.$

После преобразования последние неравенства принимают вид второго неравенства условия 1) теоремы.

Условие 2) теоремы следует из предположения, что $\ell_2 > \ell_1$.

Решение t_1 является решением системы трансцендентных уравнений, если оно удовлетворяет первому уравнению системы (12). Отсюда следует условие 3) теоремы.

Теорема доказана полностью.

Замечание 1. Система неравенств и равенств в условиях 1)–3) доказанной теоремы установлена строгими аналитическими выкладками с использованием равносильных переходов и свойств логарифмической функции, поэтому представляется непротиворечивой. В связи с этим возможно построение примера существования kT-периодического решения. Действительно, например, при $f(t) = 1 + 2\sin(t + \frac{\pi}{3}) + 5\sin(2t)$, $T_B = 2\pi$, $\lambda_s = 0, 2$, $\gamma_s = -0, 5$ упомянутая система неравенств и равенств справедлива при $m_1 = -5$, $m_2 = 15, 73$, $\ell_1 = -6$, $k_s^0 = -2$, а система (10) имеет единственное решение $t_1 = 3, 51$.

Замечание 2. В теореме сформулированы необходимые условия существования периодического решения канонической системы уравнений, а в силу неособого преобразования — исходной системы. Кроме того, определены свойства искомого периодического решения для заданного периода $T_B = kT$, а именно, момент времени первого переключения t_1 и две точки переключения $Y^1 = SX^1$, $Y^2 = SX^2$.

Замечание 3. Система трансцендентных уравнений составлена из необходимых условий существования хотя бы одного периодического решения с заданными свойствами. Поэтому условия на коэффициенты канонической системы, при которых система трансцендентных уравнений не имеет решения t_1 , определяют множества в пространстве коэффициентов канонической системы (в силу неособого преобразования в пространстве исходной системы), в которых не могут возникнуть искомые периодические решения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зубов В.И. Колебания в нелинейных и управляемых системах. Л.: Судпромгиз, 1962. 631 с.
- 2. Нелепин Р.А. Точные аналитические методы в теории нелинейных автоматических систем. Л.: Судостроение, 1967. 447 с.
- 3. Покровский А.В. Существование и расчет устойчивых режимов в релейных системах // Автоматика и телемеханика. 1986. № 4. С. 16–23.

- 4. Евстафьева В.В., Камачкин А.М. Динамика системы управления с неоднозначными нелинейностями при наличии внешнего воздействия // Анализ и управление нелинейными колебательными системами / Под ред. Г.А. Леонова, А.Л. Фрадкова. СПб.: Наука, 1998. С. 22–39.
- 5. Евстафьева В.В., Камачкин А.М. Управление динамикой гистерезисной системы с внешним воздействием // Вестн. С.-Петерб. ун-та. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2004. Вып. 2. С. 101–109.

Виктория Викторовна Евстафьева, Санкт-Петербургский государственный университет, Университетская наб., 7/9, 199034, Санкт-Петербург, Россия E-mail: vica@apmath.spbu.ru